Edge Linking and Boundary Detection
3 Edge Linking

- Local processing
 - link all points in a local neighbourhood (3x3, 5x5, etc.) that are considered to be similar
 - similar response strength of a gradient operator
 - similar direction of the gradient vector
3 Edge Linking

- Local processing
 - link all points in a local neighbourhood (3x3, 5x5, etc.) that are considered to be similar
 - similar response strength of a gradient operator
 - similar direction of the gradient vector

- Global processing
 - Hough transform
3 Edge Linking

- Hough Transform
 - a method for finding global relationships between pixels
 - example: finding straight lines in an image
 - apply edge enhancing filter (e.g., Laplace)
 - set a threshold for deciding what is a true "edge pixel"
 - extract the pixels that are on a straight line using the Hough transform

original image edge enhanced image thresholded edge image
3 Edge Linking

- Hough Transform

\[y_i = ax_i + b \]

\[b = -ax_i + y_i \]
3 Edge Linking

Hough Transform

- divide parameter space into accumulator cells $A(p,q)$
 - initialise all cell values $A(p,q) = 0$
- for all selected pixels (x_i, y_i) in the image
 - for all a-values a_p ("draw a line in ab-space")
 - calculate the corresponding b-value $b_q = -a_p x_i + y_i$
 - increment accumulator value $A(p,q) \leftarrow A(p,q) + 1$
- $A(p,q) = Q \leftrightarrow Q$ points in xy-space lying on the line $y = a_p x + b_q$
- complexity = (number of a-increments) \times (number of points)

result: the largest value $A(p',q') = \max\{A(p,q)\}$
gives the line connecting the largest number of pixels
3 Edge Linking

Hough Transform

- In reality, we have a problem with \(y = ax + b \) because \(a \) reaches infinity for vertical lines. → use \(x \cos \theta + y \sin \theta = \rho \) instead.

- Different variations of the Hough transform can also be used for finding other shapes of the form \(g(\mathbf{v}, \mathbf{c}) = 0 \):
 - \(\mathbf{v} \) is a vector of coordinates.
 - \(\mathbf{c} \) is a vector of coefficients.

- Possible to find any kind of simple shape.
 - E.g., circle: \((x - c_1)^2 + (y - c_2)^2 = c_3^2\) (3D parameter space)
3 Edge Linking

- Hough Transform – Example
 - 5 points
 - points of intersection
 - A ↔ line through 1, 3, 5
 - B ↔ line through 2, 3, 4
3 Edge Linking

- Hough Transform-based Edge Linking
 - compute the image gradient
 - threshold the image gradient
 - specify subdivisions in the $\rho \theta$ space
 - examine the counts of accumulator cells for high pixel concentrations
 - examine continuity between the pixels in a cell
 - continuity typically based on computation of the distance between disconnected pixels identified during traversal of a set of pixels according to a given accumulator cell
3 Edge Linking

- Hough Transform-based Edge Linking
 - aerial infrared image
 - thresholded gradient
 - Hough transform
 - set of pixels in the 3 max. accumulator cells linked over gaps < 6 pixels
3 Edge Linking

- Hough Transform-based Edge Linking

from http://www.cs.tu-bs.de/rob/lehre/bv/HNF.html
3 Edge Linking

- Hough Transform-based Edge Linking

7 maxima from http://www.cs.tu-bs.de/rob/lehre/bv/HNF.html
3 Edge Linking

Hough Transform-based Edge Linking

from http://www.cs.tu-bs.de/rob/lehre/bv/HNF.html
Thresholding
4 Thresholding

- **Global**
 - based on some kind of histogram: grey-level, edge, feature etc.
 - lighting conditions are extremely important, will only work under very controlled circumstances
 - fixed threshold (the same value is used in the whole image)

- **Local (or Adaptive Thresholding)**
 - depends on the position in the image
 - the image is divided into overlapping sections which are thresholded one by one
4 Thresholding

- Global Thresholding – Histograms

 to love…

 …and to hate
4 Thresholding

Global Thresholding – Illumination

- solutions
 - calibration of the imaging system
 - measure illumination pattern g
on a white reflective surface
 - normalize images f
 obtained by dividing through g
 - local/adaptive thresholding
 - use a percentile filter with very large mask
to estimate illumination
4 Thresholding

- Automatic Thresholding Algorithm
 1. select an initial estimate for T
 2. segment the image using T which produces 2 groups:
 - G_1, pixels with value $>T$ and G_2, with value $<T$
 3. compute μ_1 and μ_2 as average pixel value of G_1 and G_2
 4. new threshold: $T=1/2(\mu_1+\mu_2)$
 5. repeat steps 2 to 4 until T stabilizes

- very easy + very fast
- assumptions: normal dist. + low noise
4 Thresholding

- Automatic Thresholding
4 Thresholding

- Optimal Thresholding
 - based on the shape of the image histogram

\[p(z) = P_1 p_1(z) + P_2 p_2(z) \]

- mixture distribution
- if \(P_1 = P_2 \) then optimum threshold is at \(T \)
4 Thresholding

- Otsu’s Method
 - Maximize between-class variance (10.3.3 GW)
 - Based on the histogram (L-1 grey levels)
 - Find Threshold \(k \) for which \(\eta \) is maximized:

\[
\eta = \frac{\sigma_B^2}{\sigma_G^2}
\]

\[
\sigma_B^2 = P_1 (m_1 - m_G)^2 + P_2 (m_2 - m_G)^2
\]

\[
\sigma_G^2 = \sum_{i=0}^{L-1} (i - m_G)^2 p_i
\]

\[
m_G = \sum_{i=0}^{L-1} i \cdot p_i
\]

\[
m_1(k) = \frac{1}{P_1(k)} \sum_{i=0}^{k} i \cdot p_i
\]

\[
m_2(k) = \frac{1}{P_2(k)} \sum_{i=k+1}^{L-1} i \cdot p_i
\]
4 Thresholding

- Adaptive Thresholding

![Diagram showing adaptive thresholding process with images and graphs illustrating the changes in threshold values T.]
4 Thresholding

Chow-Kaneko Method

- subdivide image into overlapping regions
- test bimodality for each region
 - fit a bimodal Gaussian to the histograms of the bimodal regions
 - select optimal threshold for each bimodal region
- compute thresholds for the non-bimodal regions by interpolating the thresholds of the bimodal regions
- interpolate thresholds for each pixel (2nd interpolation)
- can yield excellent results
4 Thresholding

Remarks on Thresholding

- problem: can leave “holes” in segmented objects
 - solution: post-processing with morphological operators
- thresholding is a special case of pixel classification
 - 2 classes: 0 or 1 (above or below threshold)

Histogram Improvement Using Boundary Information

- determine edges using the image gradient and Laplacian
 - discard pixels not on an edge (gradient < threshold)
 - derive segmentation threshold from a histogram of the edge pixels (gradient > threshold)
- similar height of histogram peaks for object and background
- peaks tend to be better separated (deeper valleys)