Mark III Mobile Nose –
A Stereo Electronic Nose
for a Mobile Inspection Robot

Achim Lilienthal, Tom Duckett
University of Tübingen, WSI / Örebro University, AASS
Contents

1) Introduction
2) Set-Up of the Mark III Mobile Nose
3) Dynamic Response Experiment
4) Sensor Model
5) Evaluation
6) Results
7) Conclusions
8) Applications
1) Introduction

- Mobile Nose
 - cover larger scale environments
 - electronic watchman with smelling ability, …
 - use in rescue robots
 - detection
 - localisation
 - identification
2) Set-Up of the Mark III Mobile Nose

- metal oxide gas sensors
 - doped semiconducting surface layer
 - heating element

- pros and cons
 - high sensivity
 - inexpensive
 - low selectivity
 - long recovery
2) Set-Up of the Mark III Mobile Nose

- stereo architecture
 - 2 equivalent sets
 - Figaro TGS 2600
 - Figaro TGS 2610
 - Figaro TGS 2620
 - 40 cm separation
2) Set-Up of the Mark III Mobile Nose

- use of suction fans
 - Papst 405F (8 m³/h)
 - sensors behind a covering bar
2) Set-Up of the of the Mark III Mobile Nose

- use of a "septum"
 - fans directed against each other
 - decrease the rate of air exchange
3) Dynamic Response Experiment

- dynamic response of the mobile nose
- step stimulus by opening a bottle
3) Dynamic Response Experiment

- dynamic response of the mobile nose
- step stimulus by opening a bottle

wait for 20s
3) Dynamic Response Experiment

- dynamic response of the mobile nose
- step stimulus by opening a bottle

open the bottle for 10 s
3) Dynamic Response Experiment

- dynamic response of the mobile nose
- step stimulus by opening a bottle

wait for 120s
3) Dynamic Response Experiment

- dynamic response of the mobile nose
- step stimulus by opening a bottle

repeat on other side
4) Sensor Model

- assume first-order sensor model
- exponential rise and decay
4) Sensor Model

- assume first-order sensor
- exponential rise and decay
5) Evaluation

- non-linear fitting: Marquardt-Levenberg
 - gnuplot implementation can be used
 - parameter values
 - asymptotic standard error
5) Evaluation

- combining individual fits
 - assuming Gaussian distribution with different σ_i
 - maximum likelihood estimator
 - weighted averaging

\[
\bar{x} = \frac{\sum \omega_i x_i}{\sum \omega_i} \quad \quad \omega_i = \frac{1}{\sigma_i^2}
\]

\[
\bar{\sigma}^2 = \frac{\sum \omega_i}{(\sum \omega_i)^2 - \sum \omega_i^2} \sum \omega_i (x_i - \bar{x})
\]
6) Results - No Fans

$\tau_r \approx 1.93 \pm 1.18 \text{ s}$

$\tau_d \approx 28.88 \pm 6.02 \text{ s}$

TGS 2620, 2×6 trials
6) Results - Fans

\(\tau_r \approx 1.85 \pm 0.71 \text{ s} \)

\(\tau_d \approx 9.90 \pm 2.14 \text{ s} \)

\(\tau_r \approx 1.91 \pm 0.96 \text{ s} \)

\(\tau_d \approx 10.20 \pm 0.75 \text{ s} \)
6) Results - Fans

- \(\tau_r \approx 1.85 \pm 0.71 \text{ s} \)
- \(\tau_d \approx 9.90 \pm 2.14 \text{ s} \)

TGS 2620, 2×6 trials
6) Results - Fans and Septum

\[\tau_r \approx 1.91 \pm 0.96 \text{ s} \]

\[\tau_d \approx 9.90 \pm 2.14 \text{ s} \]

TGS 2620, 2×9 trials
7) Conclusions

- method to determine dyn. response parameters
 - experiment
 - evaluation
- first-order sensor model is appropriate
7) Conclusions

- design of the Mark III Mobile Nose introduced using fans doesn't change response time ...
 \[\tau_r \approx 2 \text{s} \]
- ... but rather speeds up recovery
 \[\tau_d^{(\text{no fans})} \approx "20 \text{s}" \]
 \[\tau_d^{(\text{fans})} \approx 11 \text{s} \]
- separation of airstreams is needed
8) Applications - Turbulence

- problem of turbulence

Smyth & Moum 2001
8) Applications - Turbulence

- instantaneous distribution
8) Applications - Gas Concentration Mapping

- mapping algorithm to combine gas sensor readings
8) Applications - Gas Concentration Mapping

- mapping algorithm to combine gas sensor readings

15 min
8) Applications - Gas Concentration Mapping

- mapping algorithm to combine gas sensor readings

30 min
8) Applications - Gas Concentration Mapping

- mapping algorithm to combine gas sensor readings

60 min
8) Applications - Gas Concentration Mapping

- mapping algorithm to combine gas sensor readings

120 min
8) Applications - Gas Concentration Mapping

- mapping algorithm to combine gas sensor readings

178 min
8) Applications - Gas Concentration Mapping

"av. max. concentration - source" distance
8) Applications - Gas Concentration Mapping

- evolution
8) Applications - Reactive Gas Source Localisation - PL

- smelling Braitenberg vehicle

"Permanent Love"
8) Applications - Reactive Gas Source Localisation - PL

- smelling Braitenberg vehicle

Achim Lilienthal (WSI, Tübingen / AASS, Örebro)
8) Applications - Reactive Gas Source Localisation - EL

- exploration & gas concentration peak avoiding

“AExploring Love”
8) Applications - Reactive Gas Source Localisation - EL

- exploration & gas concentration peak avoiding

Achim Lilienthal (WSI, Tübingen / AASS, Örebro)
8) Applications - Curvature Mapping

- curvature mapping
 - use current tangent
 - increase grid cells the robot turns away from
 - by a fixed amount
 - proportional to the curvature of the path
8) Applications - Curvature Mapping