Q-RAN: A Constructive Reinforcement Learning Approach for Robot Behavior Learning

Jun Li, Achim Lilienthal
Department of Technology
Örebro University
Sweden

Tomás Martínez-Marín
Department of Physics, System Engineering and Signal Theory
University of Alicante, Spain

Tom Duckett
Department of Computing and Informatics
University of Lincoln, UK
Outline

- Background – acquiring a robot behavior
 - by engineering design
 - by learning from robot’s own experiences

- A layered learning system – QRAN
 - Main ideas of our learning system
 - Architecture of our learning system
 - Implementation of QRAN learning
 - Comments on QRAN learning

- Experimental results and analysis
 - Docking behavior
 - Learning by the QRAN system

- Conclusion and future work
Background – acquiring behaviors

- A reactive behavior
 - a sequence of sensory states and their corresponding motor actions for different tasks
 - some example behaviors

Robot docking Moving-object following Doorway crossing
Background—acquiring behaviors

Engineering design

- Linear control[^1^], Fuzzy control[^2^], and Symbolic-based planning[^3^].

Learning from experiences

- Learning by demonstration[^1^], shaping[^2^], and development[^3^]

A layered learning system

Main ideas of our learning system

- A prior knowledge controller (rough controller)
 - derived from the engineering design, or
 - derived from the demonstration of a “teacher”

- Lower layer with supervised learning
 - improving the prior knowledge controller
 - in the sense of smooth control

- Upper layer with reinforcement learning
 - improving the lower layer’s controller
 - in the sense of optimal control
A layered learning system

- Learning system’s architecture

![Diagram of a layered learning system with sensory-motor inputs, Q-RAN, RAN, supervised learning layer, prior knowledge controller, and motor outputs.](image)
A layered learning system

QRAN learning:

\[Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)] \]

where \(s_t \in S \), and \(a_t \in A \)
A layered learning system

- Comments on QRAN learning
 - Applicable constraints of Q-learning
 - Discrete state-action representation
 - Infinite visits of \((s, a)\) guarantee the optimal mapping
 - Related work
 Rivest et. al, Combining TD-learning with cascade-correlation networks, ICML-2003
 Smart et. al, Effective reinforcement learning for mobile robot, ICRA-2002
 Santos et. al, Exploration tuned reinforcement learning for mobile robot, Neucomp. 1999
 Martínez et. al, Fast reinforcement learning for vision-guided mobile robots. ICRA-2005

 - What is new in QRAN-learning
 - RAN – A constructive ANN for continuous states representation
 - Off-policy of Q-learning speeds up the learning process on real robots
 - Easy to use and simple to implement due to the simple structure
Experimental results and analysis

- Docking behavior

- A start position
- Approaching table
- Tracing a green can
- Picking up the can
Experimental results and analysis

LC controller solution

\[v_{\text{trans}} = k_P P \]
\[v_{\text{rot}} = k_\alpha \alpha + k_\beta \beta \]

Where
\(v_{\text{trans}} \) – translational velocity
\(v_{\text{rot}} \) – rotational velocity
\(\alpha, \beta, \) and \(P \) – state variables
\(k_\alpha, k_\beta, \) and \(k_P \) – gains

\((x_G, y_G)\) – the global coordinates
Experimental results and analysis

Docking becomes a complex behavior

1. \(\{a_{\text{tilt}}, a_{\text{pan}}, a_{\text{edge}}\}\) is in local coordinate (clip: LC_chattering)
 a. LC controller is not applicable (overshooting and not robust)
 b. dependence time lag and momentum of robot and camera

2. fully reactive docking behavior
 a. the visual servoing – stabilizing and synchronizing
 b. the object tracking – robust

3. precise positioning at the goal pose

4. time-optimal trajectory
Experimental results and analysis

Object tracking and visual servoing

- Estimating the table edge’s angle a_{edge}
 1. computing edge slope b_r by a LS model
 2. $a_{\text{edge}} = \arctan b_r$

- Estimating a_{pan} and a_{tilt} by PD controllers
 \[
 \Delta \text{Pan} = k_{pp} (x_o^{\text{cur}} - x_I) + k_{dp} \Delta x \\
 \Delta \text{Tilt} = k_{pt} (y_o^{\text{cur}} - y_I) + k_{dt} \Delta y
 \]

- State variables (α, β, P) is estimated by visual servoing variables
 \[
 \alpha = a_{\text{pan}}, \beta = a_{\text{edge}}, P = 80 - a_{\text{tilt}}
 \]
Experimental results and analysis

Learning with QRAN
- State inputs: $x = [\alpha, \beta, u]^T$
- Action output:
 - Rotational velocity v_{rot} learned by QRAN
 - Translational velocity is determined by $v_{\text{tran}} = k_P P$

Training QRAN network
1. estimate the control variable $\{\alpha, \beta, P\}$ by visual servoing
2. if goal or failure state, then end this episode, move the robot to a new starting position, goto 1 to start a new episode
3. else train the QRAN network, and goto 1
Experimental results and analysis

- Comparison: Q-RAN and LC controllers

- Q-RAN avoids "chattering" significantly

- LC still is in "chattering" state

- Number of training examples

- Number of neurons

- Rotational velocity v_{rot} (degree/s)

- State variables (α, β)
Experimental results and analysis

Comparison: QRAN and LC controllers

<table>
<thead>
<tr>
<th>Controller</th>
<th>Successful trials</th>
<th>Average steps</th>
<th>Number of neurons</th>
<th>Training episodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRAN</td>
<td>10 of 10</td>
<td>405 ± 12</td>
<td>263</td>
<td>23</td>
</tr>
<tr>
<td>LC</td>
<td>8 of 10</td>
<td>458 ± 14</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Experimental results and analysis

- Learning with the layered learning architecture

Learning with lower and upper layers
(Approx. 4m away from the goal)

<table>
<thead>
<tr>
<th>Controller</th>
<th>Successful trials</th>
<th>Average steps</th>
<th>Number of neurons</th>
<th>Training episodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRAN</td>
<td>10 of 10</td>
<td>518 ±19</td>
<td>181</td>
<td>18</td>
</tr>
<tr>
<td>RAN</td>
<td>9 of 10</td>
<td>618 ±28</td>
<td>126</td>
<td>100</td>
</tr>
<tr>
<td>LC</td>
<td>7 of 10</td>
<td>685 ±30</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Experimental results and analysis

- Some example trajectories of layered learning
Conclusion and future work

Conclusion

- A layered learning architecture is proposed
 - LC is used as a prior knowledge
 - Lower layer with RAN network improves the LC controller in supervised learning fashion
 - Upper layer with QRAN improves the RAN controller in reinforcement learning fashion
- QRAN learning algorithm is proposed
 - Off-policy: incorporation of prior knowledge
 - Constructive ANN: dynamic representation of state space

Future work

- Automatic design of the reward function