Integrating SLAM and Gas Distribution Mapping (GDM) – A Rao-Blackwellisation Approach to GDM/SLAM

Achim J. Lilienthal, Amy Loutfi
AASS Research Centre, Dept. of Technology, Örebro University

Jose Luis Blanco, Cipriano Galindo and Javier Gonzalez
System Engineering & Automation Dept., University of Malaga
Achim J. Lilienthal

Contents

1. Applications of Gas Distribution Mapping (GDM)
2. GDM in Realistic Environments
3. Related Work on Gas Distribution Mapping
4. Kernel Based Gas Distribution Mapping
5. Integration of SLAM and Gas Distribution Mapping
6. Experiments and Results
7. Summary and Future Work
Applications of Gas Distribution Modelling
1 Gas Distribution Modelling

Applications

- Oil Refinery Surveillance
1 Gas Distribution Modelling

Applications

- Oil Refinery Surveillance
- Garbage Dump Site Surveillance
1 Gas Distribution Modelling

Applications

- Oil Refinery Surveillance
- Garbage Dump Site Surveillance
- Pollution Monitoring

- air quality monitoring and surveillance of pedestrian areas
- communicating pollution levels to technical staff / pedestrians
1 Gas Distribution Modelling

Applications

- Oil Refinery Surveillance
- Garbage Dump Site Surveillance
- Pollution Monitoring
 - air quality monitoring and surveillance of pedestrians
 - communicating pollution levels to technical staff
- Disaster Prevention
1 Gas Distribution Modelling

Applications

- Oil Refinery Surveillance
- Garbage Dump Site Surveillance
- Pollution Monitoring
 - air quality monitoring and surveillance of pedestrian areas
 - communicating pollution levels
- Disaster Prevention
- Rescue Robots
- ...
Gas Distribution Mapping in Natural Environments – The Challenges
2 Gas Distribution Mapping – Challenges

- Chaotic Gas Distribution
 - diffusion
 - advective transport
 - turbulence
2 Gas Distribution Mapping – Challenges

- Chaotic Gas Distribution
- Point Measurement
 - sensitive sensor surface is typically small (often $\approx 1\text{cm}^2$)
2 Gas Distribution Mapping – Challenges

- Chaotic Gas Distribution
- Point Measurement
 - sensitive sensor surface is typically small (often $\approx 1\text{cm}^2$)
 - effective sampling region also small and approx. spherical (fan)
2 Gas Distribution Mapping – Challenges

- Chaotic Gas Distribution
- Point Measurement
- Sensor Dynamics
Related Work on
Gas Distribution Mapping
3 Related Work on GDM

Approaches to GDM

- simultaneous measurements at equidistant grid positions with multiple stationary sensors
 - average concentration
 - average time 5 to 8 minutes

- peak concentration
- sampling period 20 s

3 Related Work on GDM

- Approaches to GDM
 - stationary sensor response → bi-cubic interpolation
 - consecutive measurements, averaging over 2 min
 - measurements in a wind tunnel

3 Related Work on GDM

Approaches to GDM

- mobile sensor → triangle-based cubic interpolation
 - sensor array carried by a robot, speed ≈ 10 cm/s, zig-zag trajectory

- measurements in a wind tunnel
- measurement points not equally distributed
- averaging over three runs
3 Related Work on GDM

Approaches to GDM

- odour hits histogram
 - gas sensor measurements from a group of robots (random walk)

- needs definition of a threshold, odour hits if larger than ε
 → map depends on ε

- wind tunnel experiment (\approx1m/s)

- hot water pan gas source and conducting polymer sensors
 → very fast sensor characteristic
3 Related Work on GDM

- Approaches to GDM
 - Kernel Gas Distribution Mapping
 - gas sensor measurements from a moving robot
 - interpret gas sensor measurements $z^{1:t}$ as random samples from a time-constant distribution
 - assumes time-constant structure of the gas distribution
 - randomness due to concentration fluctuations (measurement noise negligible)
 - kernel models information content of single readings
 \[E[p(m_{gas}^{av} \mid x^{1:t}, z_{gas}^{1:t})] \]

3 Related Work on GDM

- Approaches to GDM
 - Kernel Gas Distribution Mapping
 - pre-defined path, random movement
 - metal-oxide gas sensors
 → long decay time
3 Related Work on GDM

Approaches to GDM

- position of the measurement points
 - from odometry
 - human measurements
 - external positioning system

- these approaches assume perfect knowledge of sensor positions
Integrating SLAM and Gas Distribution Mapping
5 Integrating SLAM and Gas Distribution Mapping

- General SLAM problem

\[p(x_{1:t}^{|t}, m^t | u_{1:t}^{|t}, z_{1:t}^{|t}) \]

- simultaneously estimate the map and the robot path given robot actions \(u \) and observations \(z \)

- Simultaneous Localisation and Gas Distribution/Occupancy Mapping (GDM/SLAM)

\[m \leftarrow m = \begin{pmatrix} m_{av}^{gas} \\ m_{occ} \end{pmatrix} \]

\[z_t \leftarrow z_t = \begin{pmatrix} z_{gas,t} \\ z_{occ,t} \end{pmatrix} \]
5 Integrating SLAM and Gas Distribution Mapping

- The GDM/SLAM Problem
 - useful factorization if maps can be analytically estimated given a robot path hypothesis

\[
p(x^{1:t}, m^t | u^{1:t}, z^{1:t}) =
\]

\[
p(x^{1:t} | u^{1:t}, z^{1:t}) p(m^t | x^{1:t}, u^{1:t}, z^{1:t})
\]

- estimate robot path using a particle filter
- compute maps analytically

Rao-Blackwellization, Rao-Blackwellized Particle Filter (RBPF)
5 Integrating SLAM and Gas Distribution Mapping

- GDM/SLAM – Map Computation
 - observations z_{occ} and z_{gas} are conditionally independent
 - assume independency between m_{occ} and m_{gas}
5 Integrating SLAM and Gas Distribution Mapping

- **GDM/SLAM – Map Computation**
 - observations z_{occ} and z_{gas} are conditionally independent
 - assume independency between m_{occ} and m_{gas}
 - computing maps separately for each particle
 - mapping using known poses
 - occupancy grid map using sensor integration
 [Moravec/Elfes 1985]
 - gas distribution grid map using
 kernel based gas distribution mapping [Lilienthal/Duckett, 2004]
5 Integrating SLAM and Gas Distribution Mapping

- GDM/SLAM – Estimation of the Robot Path
 - sample from the motion model
 \[x_t^{[i]} \sim p(x_t \mid x_{t-1}^{[i]}, u_t) \]
 - update weights with the observation model
 \[\omega_t^{[i]} \propto \omega_{t-1}^{[i]} p(z_t \mid x_t^{[i]}, m^{[i]}) \]
 - higher weights for particles that correspond better with the current observations
5 Integrating SLAM and Gas Distribution Mapping

GDM/SLAM – Estimation of the Robot Path

observation model

\[p(z_t | x_t^{[i]}, m^{[i]}) = p(z_{\text{gas},t}, z_{\text{occ},t} | x_t^{[i]}, m_{\text{gas}}^{[i]}, m_{\text{occ}}^{[i]}) \]

\[= p(z_{\text{gas},t} | x_t^{[i]}, m_{\text{gas}}^{[i]}) p(z_{\text{occ},t} | x_t^{[i]}, m_{\text{occ}}^{[i]}) \]

\[\approx \eta p(z_{\text{occ},t} | x_t^{[i]}, m_{\text{occ}}^{[i]}) \]

use only the laser scanner to estimate the path
5 Integrating SLAM and Gas Distribution Mapping

Computing the ML Estimate of the Maps

- computed as the marginal of the maps taken over all the hypotheses of robot paths

\[p(m \mid z^{1:t}) = \sum_i \omega_t^{[i]} p(m \mid x^{1:t, [i]} , z^{1:t}) \]

- assuming that Kernel-GDM approximates

\[E[p(m_{gas}^{av} \mid x^{1:t, [i]}, z_{gas}^{1:t})] \]

the final GDM estimate is

\[\sum_i \omega_t^{[i]} E[p(m_{gas}^{av} \mid x^{1:t, [i]}, z_{gas}^{1:t})] = E[p(m_{gas}^{av} \mid z_{gas}^{1:t})] \]
Experiments and Results
6 Experiments

Service Robot Sancho

- base: Pioneer 3DX
- laser range finder: SICK LMS 200
- pair of e-noses
6 Experiments

Service Robot Sancho
- base: Pioneer 3DX
- laser range finder: SICK LMS 200
- pair of e-noses

Electronic Nose
- 4 metal-oxide gas sensors (Figaro): TGS 2600 [x2], TGS 2602, TGS 2620
- sensors in a tube with CPU fan
- sampling frequency: 1.25 Hz
- separation: 14 cm; height: 11 cm
6 Experiments

- Environment
 - University of Malaga, Computer Science building
 - one indoor and one outdoor corridor
 - no modification for the experiment

- Gas Source
 - evaporating ethanol
 - robot could drive over the source (cup, height = 6 cm)
6 Results

- Result – SLAM
 - robot speed: 5 cm/s
 - trajectory: sweeping

max. likelihood path

robot speed: 5 cm/s
6 Results

- Result – Gas Distribution Map
 - lighter shading \leftrightarrow higher concentration
 - different shading color for values $> 90\%$ of the max.
6 Results

- Result – Gas Distribution Map
 - lighter shading ↔ higher concentration
 - different shading color for values > 90% of the max.
6 Results

ML Estimate of the Gas Distribution Map

\[
\sum_i \omega_t^{[i]} E[p(m_{gas}^{av} | x^{1:t,[i]}, z_{gas}^{1:t})] = E[p(m_{gas}^{av} | z_{gas}^{1:t})]
\]
Summary and Future Work
Summary

- probabilistic framework for simultaneous localization and (occupancy) mapping and gas distribution mapping
 - Rao-Blackwellized particle filter formulation for GDM/SLAM
 - accounts for the position uncertainty when computing the gas distribution map
 - allows to plug in different GDM algorithms
Summary

- Conceptual framework to integrate kernel-based gas distribution mapping and SLAM
- Large gas distribution map (20 x 2 m²)
Future Work

- skip assumption that the gas distribution map and the occupancy grid map are independent
- model influence of obstacles on the gas distribution
7 Summary and Future Work

Future Work

- skip assumption that the gas sensor likelihood

 \[p(z_{gas,t} | x_t^{[i]}, m_{gas}^{[i]}) \]

 is constant over the peak area
 of the occupancy observation likelihood

 \[p(z_{occ,t} | x_t^{[i]}, m_{occ}^{[i]}) \]

 \[\rightarrow \] exploiting the time-averaged gas distribution for localisation
A Rao-Blackwellisation Approach to GDM/SLAM – Integrating SLAM and Gas Distribution Mapping (GDM)

Thank you!