Extraction of grasp-related features by human dual-hand object exploration

Krzysztof Charusta, Dimitar Dimitrov, Achim J. Lilienthal and Boyko Iliev

Center of Applied Autonomous Systems (AASS)
Department of Technology, Örebro University, Sweden
Introduction
Introduction
Introduction
Introduction
Introduction
Motivation

- Overcome drawbacks of vision/scanning based methods
 - object recognition/localization is compromised if visual clues are absent
- Utilize benefits of Programming by demonstration
 - “Human Touch” in object exploration
- Extract intrinsic properties of the object
 - mass center
- We try to capture features that contain “intuitive knowledge” about the object.
Experimental Setup
Setup

- Motion Capture System
Setup

- Motion Capture System
 - Set of stereo cameras
Setup

- Motion Capture System
 - Set of stereo cameras
 - Gloves
Setup

- Motion Capture System
 - Set of stereo cameras
 - Gloves

- System output:
Setup

- Motion Capture System
 - Set of stereo cameras
 - Gloves

- System output:
 - Visible LEDs' 3D position
Setup

- Motion Capture System
 - Set of stereo cameras
 - Gloves

- System output:
 - Visible LEDs' 3D position
 - Fingertips contact (binary)
Object exploration
a sequence of fingertip grasps registered by the tactile sensors and the motion capture system
It is a sequence of fingertip grasps registered by the tactile sensors and the motion capture system.
It is a sequence of fingertip grasps registered by the tactile sensors and the motion capture system.
It is a sequence of fingertip grasps registered by the tactile sensors and the motion capture system
It is a sequence of fingertip grasps registered by the tactile sensors and the motion capture system.
It is a sequence of fingertip grasps registered by the tactile sensors and the motion capture system.

Output: A Point cloud of all contact points.
It is a sequence of fingertip grasps registered by the tactile sensors and the motion capture system.

Assumption: Hand is treated as a rigid body.
Accuracy improvements

- Two major problems:
 - LED position reading is inaccurate
 Because of the skin softness.
 - LEDs might be occluded.
 Used system is vision based.
Accuracy improvements

- Improvements:
 - Take average of a few frames
Accuracy improvements

- Improvement:
 - Take average of a few frames
Features of an object
Features

Graspable regions

• Based on geometric criteria
• Segmentation of an object

Approach vectors

• Human-like approach direction
Features

Graspable regions
- Based on geometric criteria
- Segmentation of an object

Approach vectors
- Human-like approach direction

For every Approach vector in a Graspable region let us generate:
Features

Graspable regions

• Based on geometric criteria
• Segmentation of an object

Approach vectors

• Human-like approach direction

For every Approach vector in a Graspable region let us generate:

• It's grasp oriented
• Easily graspable
• Any other primitive can be used
To segment collected grasps we find criteria:

- Grasp Direction
- Grasp Center
To segment collected grasps we find criteria:

- Grasp Direction
- Grasp Center
To segment collected grasps we find criteria:

- Grasp Direction
- Grasp Center
Feature extraction – graspable regions

To segment collected grasps we find criteria:

- Grasp Direction
- Grasp Center
To segment collected grasps we find criteria:
- Grasp Direction D_i
- Grasp Center c_i

Unsupervised clustering based on:
1. Cosine distance between Grasp Directions
2. Cartesian distance between Grasp Centers
Feature extraction – approach vectors

- Approach vectors
Feature extraction – approach vectors

Approach vectors
Feature extraction – approach vectors

- Approach vectors

![Diagram showing approach vectors and their relationships with distinct points and lines.](image-url)
Feature extraction – GOBB

- Collected points
- Grasp centers c_i
- Middle hand point a_i
- Approach vectors i
Feature extraction – GOBB

- Collected points
- Grasp centers
- Grasp centers c_i
- Middle hand point a_i
- Approach vectors i
Feature extraction – GOBB

- Collected points
- Grasp centers
- Grasp centers c_i
- Middle hand point a_i
- Approach vectors \mathbf{v}_1, \mathbf{v}_2
Feature extraction – GOBB

- Collected points
- Grasp centers
- Grasp centers c_i
- Middle hand point a_i
- Approach vectors i
Feature extraction – GOBB

- Collected points
- Grasp centers
- Grasp centers c_i
- Middle hand point a_i
- Approach vectors i
Explored objects

Experimental results
Explored objects I

- Cluster I
- Cluster II
- Unclustered
- Approach vectors
Explored objects II

- Cluster I
- Cluster II
- Unclustered
- Approach vectors
Explored objects III

- Cluster I
- Unclustered
- Approach vectors
Conclusions & future work
Conclusions & Future work

- This is “human touch” in object exploration.
- Dual hand exploration, convenient for human operator.
- We don't neglect vision solutions but present complementary method.

- System's precision evaluation
- Grasping tests