Statistical Approaches to Gas Distribution Modelling with Mobile Robots –
The Kernel DM+V Algorithm and Beyond

Many others … and Achim J. Lilienthal

AASS Learning Systems Lab, Örebro University
1. Introduction
2. Gas Distribution in a Natural Environment
3. Statistical Gas Distribution Modelling (GDM)
4. Kernel DM+V Algorithm
5. Importance of Pred. Variance for GDM
6. Kernel DM+V Extensions
7. Ongoing and Future Work
8. Summary
Gas Distribution Modelling with Stationary and Mobile Sensor Networks
1 GDM with Sensor Networks

Air Pollution Monitoring with Sensor Networks

The London Air Quality Network
(King’s College London)
Gas Distribution Modelling with Sensor Networks

- continuous collection of dense measurements
 - gas concentration, air flow, temperature, humidity
- central integration into one consistent, truthful model
- close integration with subsequent decision processes
1 GDM with Sensor Networks

- continuous collection of dense concentration measurements
- central integration into one consistent, truthful model
- close integration with subsequent decision processes
- integration of mobile sensors
 - positioned by human operators (field inspector) ...
GDM with Sensor Networks

- GDM with Autonomous Sensor Networks
 - continuous collection of dense concentration measurements
 - central integration into one consistent model
 - close integration with subsequent decision processes
 - integration of mobile sensors
 - positioned by human operators...
 - ... or by mobile robots
Advantages of Using Mobile Sensor Nodes

- fewer sensors are necessary (expensive ones can be used)
- compensation for inactive sensors
- optimisation of trajectory wrt the task (sensor planning)
 - adaptation to changing environmental conditions
 - possibility of source tracking
- integration into existing applications
- rapid deployment (less expensive)
- deployment at dangerous sites
- accurate positioning
Gas Distribution Modelling Projects at the AASS Learning System Lab – DustBot
1 GDM in AASS LSLab Projects

DustBot

- Networked and Cooperating Robots for Urban Hygiene
- Duration: December 1, 2006 – November 30, 2009 (36m)
- Coordinator: Scuola Superiore Sant'Anna (PSV, Pontedera)
- Partners: Italy, UK, Spain, Switzerland, Sweden
 - 5 universities/research institutes
 - 4 companies
- People involved at AASS
 - Matteo Reggente, Marco Trincavelli, Amy Loutfi, Achim Lilienthal, Todor Stoyanov (navigation)
1 GDM in AASS LSLab Projects

- DustBot
 - Networked and Cooperating Robots for Urban Hygiene
1 GDM in AASS LSLab Projects

- DustCart
1 GDM in AASS LS Lab Projects

- DustCart Scenario
1 GDM in AASS LSLab Projects

- DustBot
 - Networked and Cooperating Robots for Urban Hygiene
1 GDM in AASS LSLab Projects

- Pollution Monitoring in DustBot
 - continuous collection of concentration measurements
 - while performing other tasks
1 GDM in AASS LSLab Projects

- Pollution Monitoring in DustBot
 - Environmental Sensors

 Preconditioned sensors for
 - CO (0-100ppm)
 - NO₂ (0-200ppb)
 - O₃ (0-500ppb)
 - Accuracy 10%
 - ~ 200-300 €

 Temperature and Humidity sensor
 - ~ 20 €

Solid State Sensors
- Accuracy ~20%
- < 100 €

PM2.5-10 analyzer
- Accuracy 10%
- ~ 3000-3500 €
1 GDM in AASS LSLab Projects

- Pollution Monitoring in DustBot
 - experiments in realistic scenarios to come ...

- DustBot Demonstrations
 - Pontedera, Italy (May 9, 2009)
 - Peccioli, Italy (May/Jun)
 - Bilbao, Spain (Jun, 2009)
 - Örebro, Sweden (Jul 25, 2009)
 - Tomorrow City, Incheon (Aug, 2009)
 - with ETRI and KIST
Gas Distribution Modelling Projects at the AASS Learning System Lab – Diadem
1 GDM in AASS LSLab Projects

Diadem

- Distributed Information Acquisition and Decision-Making for Environmental Management
- Duration: September 1, 2008 – August 30, 2011 (36m)
- Coordinator: DECIS lab, Thales, The Netherlands
- Partners: Netherlands, Romania, Germany, Denmark, Belgium, Sweden (4 universities/research institutes, 5 companies)
- People involved at AASS
 - Sahar Asadi, Matteo Reggente, PhD, postdoc, Achim Lilienthal
1 GDM in AASS LSLab Projects

Diadem Prime Objective

- system to help making decisions to prevent chemical incidents or to mitigate their consequences by
 - establishing methods and tools that allow gaining a better understanding/overview of the distribution of gas that emanates as a result of a chemical incident,
 - providing easy access to available information (pre-processing sensor data and combining information from different sources)
 - connecting the people required to resolve a given situation and routing the appropriate information to them,
 - estimating consequences of alternative decisions and presenting them in form of a risk analysis to the decision-makers, and
 - automatic reasoning about the situation and suggesting actions
1 GDM in AASS LSLab Projects

- Diadem Scenario
 - Rotterdam harbour area
Gas Dispersal in a Natural Environment
2 Gas Dispersal in Natural Environments

- Chaotic Gas Dispersal
 - diffusion
 - advective transport
 - turbulent transport

[Smyth and Moum, 2001]
2 Gas Dispersal in Natural Environments

- Chaotic Gas Dispersal
2 Gas Dispersal in Natural Environments

- Turbulent Flow Characteristics
 - Turbulent transport is much faster than molecular diffusion
 - Gaseous ethanol at 25°C and 1 atm:
 - Diffusion constant: $0.119 \text{ cm}^2/\text{s}$ → Diffusion velocity: 20.7 cm/h
 - Turbulent flow is chaotic/unpredictable
 - Instantaneous velocity/concentration at some instant of time is generally insufficient to predict the velocity some time later
 - High degree of vortical motion
 - Large-scale eddies cause a meandering dispersal
 - Small scale eddies stretch and twist the gas distribution resulting in a complicated patchy structure

Statistical Gas Distribution Modelling
3 Statistical Gas Distribution Modelling

- Simulation of Turbulent Gas Distribution?

3 Statistical Gas Distribution Modelling

- Simulation of Turbulent Gas Distribution?
3 Statistical Gas Distribution Modelling

Simulation of Turbulent Gas Distribution?
3 Statistical Gas Distribution Modelling

- Simulation of Turbulent Gas Distribution?
 - computational fluid Dynamics (CFD) models?
Simulation of Turbulent Gas Distribution?

- no general solution to the fluid dynamics equations
- numerical simulations computationally expensive and depend sensitively on the initial/boundary conditions
- initial/boundary conditions not known in typical scenarios

→ model gas distribution statistically from a large number of measurements
3 Statistical Gas Distribution Modelling

- Statistical Gas Distribution Modelling
 - interpret concentration measurements statistically
 - statistical representation
 - gas sensor measurements treated as random variables
 - build a representation of the observed gas distribution from a sequence of measurements
3 Statistical Gas Distribution Modelling

- Statistical Gas Distribution Modelling
 - interpret concentration measurements statistically
 - statistical representation
 - gas sensor measurements treated as random variables
 - build a representation of the observed gas distribution from a sequence of measurements

- Problem Definition: Stat. Gas Distribution Modelling
 - learn predictive model
 \[
 p(r_* | \bar{x}_*, \bar{x}_{1:n}, r_{1:n})
 \]
Statistical Gas Distribution Modelling with Predictive Variance – Kernel DM+V Algorithm
Ext. Kernel Extrapolation DM (Kernel DM+V)

- GDM approached as a density estimation problem
 ⇒ relation to the Parzen window approach
Ext. Kernel Extrapolation DM (Kernel DM+V)

- GDM approached as a density estimation problem
- Gas sensor readings interpreted as a measure of the number of samples drawn from a particular grid cell
 \[\Rightarrow \text{weigh measurement values with a kernel function} \]
- Measuring gas concentrations with a mobile robot
 \[\neq \text{uniform sampling from a probability distribution} \]
 \[\Rightarrow \text{normalisation to the density of measurements} \]
Ext. Kernel Extrapolation DM (Kernel DM+V)
- extension of Kernel DM
4 Kernel DM+V

Ext. Kernel Extrapolation DM (Kernel DM+V)

- extension of Kernel DM
- estimation of predictive mean and variance
- variance estimate depends on
 - true variance of measurements
 - distance to measurement locations

Estimating the Predictive Variance Entails a Significant Step Forward for Statistical GDM!

- the models better fit the structure of gas distributions
- allows model evaluation in terms of the data likelihood
 - learning meta parameters
 - comparison of different approaches to statistical GDM
- provides the means for
 - sensor planning
 (suggest new measurement locations based on the current model)
 - lazy update mechanisms
 (determine when the model should be updated or re-initialised)
4 Kernel DM+V

Experiments in the "Microscope Room"
Kernel DM+V

- Integrated weights

\[
\Omega_k = \sum_{i=1}^{\left| D \right|} \omega_{k,i}
\]

\[
\omega_{k,i} = \text{Gauss}\left(|\vec{x}_i - \vec{x}_k(c)|, \sigma \right)
\]

\[\sigma = 10 \text{ cm}\]
4 Kernel DM+V

Kernel DM+V

integrated weights

\[\Omega_k = \sum_{i=1}^{|D|} \omega_{k,i} \]

\[\omega_{k,i} = Gauss\left(|\vec{x}_i - \vec{x}_k(c)|, \sigma \right) \]

\(\sigma = 75 \text{ cm} \)
Kernel DM+V

- integrated weights, integrated readings

\[\Omega_k = \sum_{i=1}^{\left| D \right|} \omega_{k,i} \]

\[R_k = \sum_{i=1}^{\left| D \right|} \omega_{k,i} \cdot r_i \]
4 Kernel DM+V

Kernel DM+V

- integrated weights, integrated readings

\[\Omega_k = \sum_{i=1}^{D} \omega_{k,i} \]
\[R_k = \sum_{i=1}^{D} \omega_{k,i} \cdot r_i \]

- confidence map

\[\alpha_k = 1 - \exp\left[-\frac{\Omega_k^2}{\sigma^2}\right] \]
4 Kernel DM+V

Kernel DM+V

- integrated weights, integrated readings
 \[\Omega_k = \sum_{i=1}^{|D|} \omega_{k,i} \quad R_k = \sum_{i=1}^{|D|} \omega_{k,i} \cdot r_i \]

- confidence map
 \[\alpha_k = 1 - \exp\left(-\frac{\Omega_k^2}{\sigma^2}\right) \]
 - for high values of \(\Omega_k \): \(\alpha_k \to 1 \)
 - for high values of \(\Omega_k = 0 \): \(\alpha_k = 0 \)
 - "high" and "low" relative to \(\sigma \)
4 Kernel DM+V

- Kernel DM+V
 - integrated weights

\[
\Omega_k = \sum_{i=1}^{\lvert D \rvert} \omega_{k,i}
\]

\[\sigma = 45 \text{ cm}\]
4 Kernel DM+V

- Kernel DM+V
 - confidence map

\[\alpha_k = 1 - \exp \left[-\frac{\Omega_k^2}{\sigma^2} \right] \]

\[\sigma = 45 \text{ cm} \]
4 Kernel DM+V

Kernel DM+V

- integrated weights

\[\Omega_k = \sum_{i=1}^{\\left|\rho\right|} \omega_{k,i} \]

\[\sigma = 10 \text{cm} \]
Kernel DM+V

confidence map

\[\alpha_k = 1 - \exp\left[-\frac{\Omega_k^2}{\sigma_\Omega^2}\right] \]

\(\sigma = 10 \text{ cm} \)
4 Kernel DM+V

Kernel DM+V

- integrated weights, integrated readings

\[\Omega_k = \sum_{i=1}^{D} \omega_{k,i}, \quad R_k = \sum_{i=1}^{D} \omega_{k,i} \cdot r_i \]

- confidence map

\[\alpha_k = 1 - \exp\left[-\frac{\Omega_k^2}{\sigma^2} \right] \]

- predictive mean

\[r_k = \alpha_k \cdot R_k / \Omega_k + \{1 - \alpha_k\} \cdot r_0 \]
\[r_0 = \frac{1}{|D|} \sum_{i=1}^{D} r_i \]
Kernel DM+V – Example

predictive mean

\[r_k = \alpha_k \cdot \frac{R_k}{\Omega_k} + \left\{1 - \alpha_k\right\} \cdot r_0 \]

\[\sigma = 45 \text{ cm} \]
Kernel DM+V

- integrated weights, integrated readings
 \[\Omega_k = \sum_{i=1}^{\lvert D \rvert} \omega_{k,i} \quad R_k = \sum_{i=1}^{\lvert D \rvert} \omega_{k,i} \cdot r_i \]
- confidence map
 \[\alpha_k = 1 - \exp\left[-\frac{\Omega_k^2}{\sigma_\Omega^2}\right] \]
- predictive variance estimated separately
4 Kernel DM+V

- Kernel DM+V
 - integrated weights, integrated readings
 \[\Omega_k = \sum_{i=1}^{\vert D \vert} \omega_{k,i} \quad R_k = \sum_{i=1}^{\vert D \vert} \omega_{k,i} \cdot r_i \]
 - confidence map
 \[\alpha_k = 1 - \exp\left[-\frac{\Omega_k^2}{\sigma_\Omega^2}\right] \]
 - predictive variance estimated separately
 - variance contributions for each measurement
 \[\tau_i = \left(r_i - r_{k(i)}\right)^2 \]
 \[k(i) = \text{cell closest to } x_i \]
4 Kernel DM+V

Kernel DM+V

- integrated weights, integrated readings

\[\Omega_k = \sum_{i=1}^{|D|} \omega_{k,i} \quad R_k = \sum_{i=1}^{|D|} \omega_{k,i} \cdot r_i \]

- confidence map

\[\alpha_k = 1 - \exp\left[-\frac{\Omega_k^2}{\sigma^2}\right] \]

- predictive uncertainty

\[v_k = \alpha_k \cdot V_k / \Omega_k + \{1 - \alpha_k\} \cdot v_0 \]

\[\tau_i = \left(r_i - r_{k(i)}\right)^2 \quad V_k = \sum_{i=1}^{|D|} \omega_{k,i} \cdot \tau_i \quad v_o = \frac{1}{|D|} \sum_{i=1}^{|D|} \tau_i \]
Kernel DM+V – Example

predictive variance

\[v_k = \alpha_k \cdot \frac{V_k}{\Omega_k} + \{1 - \alpha_k\} \cdot v_0 \]

\(\sigma = 45 \text{ cm} \)
4 Kernel DM+V – Remarks

Kernel DM+V

comparison with interpolation map

\[\sigma = 45 \text{ cm} \]
4 Kernel DM+V – Remarks

- Comparison with Map from Trilinear Interpolation
 - MATLAB function `trisurf`
Kernel DM+V – Summary

\[\omega_{k,i} = Gauss(\| \tilde{x}_i - \tilde{x}_k \|, \sigma) \]

\[\Omega_k = \sum_{i=1}^{|D|} \omega_{k,i} \]

\[\alpha_k = 1 - \exp \left[-\Omega_k^2 / \sigma^2 \right] \]

\[r_k = \alpha_k \cdot R_k / \Omega_k + \{1 - \alpha_k\} \cdot r_0 \]

\[R_k = \sum_{i=1}^{|D|} \omega_{k,i} \cdot r_i \quad r_0 = \frac{1}{|D|} \sum_{i=1}^{|D|} r_i \]

\[v_k = \alpha_k \cdot V_k / \Omega_k + \{1 - \alpha_k\} \cdot v_0 \]

\[\tau_i = (r_i - r_{k(i)})^2 \quad V_k = \sum_{i=1}^{|D|} \omega_{k,i} \cdot \tau_i \quad v_o = \frac{1}{|D|} \sum_{i=1}^{|D|} \tau_i \]
4 Kernel DM+V – Remarks

- Complexity
 - $O[\text{training points} \times (\sigma/c)^2 + (L/c)^2 + \text{test points}]$

- Efficiency
 - Matlab implementation
Parameter Selection
- 3 hyper-parameters: c, σ, σ_Ω

Observations
- Weak dependence on c
- σ_Ω can be related to σ

Learning Parameters
- Cross-validation to find optimal hyper-parameters
- Fitness: negative log predictive density (NLPD)

\[
NLPD = \frac{1}{2|D|} \sum_{i=1}^{|D|} \left\{ \log(2\pi \cdot V_*) + \frac{(r_i - r_*)^2}{V_*} \right\}
\]
Estimating the Predictive Variance – A Significant Step for GDM?

Importance for Modelling Gas Distributions
5 Benefits of Predictive Variance

- Spatial Structure of Concentration Variance

1. Important information about gas distributions (fluctuations)
Estimating the Predictive Variance – A Significant Step for GDM?

Model Evaluation
5 Benefits of Predictive Variance

- **Ground Truth Evaluation**
 - capability to infer hidden parameters can be used
 - source location
 - independently measured mean concentration
 - no clear correspondence between source location and maximum of distribution mean
 - independent measurements at the same height difficult in robotic experiments

- **Prediction Capability**
 - good model = allows to infer concentration levels "explains observations and accurately predict new ones"
5 Benefits of Predictive Variance

- Prediction Quality
 - negative log predictive density (NLPD) = average neg. log likelihood (assuming Gaussian posterior)

\[
NLPD = \frac{1}{2|D|} \cdot \sum_{i=1}^{D} \left\{ \log(2\pi \cdot V_\ast) + \frac{(r_i - r_\ast)^2}{V_\ast} \right\}
\]

- an estimate of pred. uncertainty (variance) is necessary
5 Benefits of Predictive Variance

- Prediction Quality
 - negative log predictive density (NLPD)
 - = average neg. log likelihood (assuming Gaussian posterior)
 - \[NLPD = \frac{1}{2|D|} \cdot \sum_{i=1}^{D} \left\{ \log(2\pi \cdot V_*) + \frac{(r_i - r_*)^2}{V_*} \right\} \]
 - an estimate of pred. uncertainty (variance) is necessary
 - enables parameter learning from data
5 Benefits of Predictive Variance

- **Prediction Quality**
 - negative log predictive density (NLPD)
 = average neg. log likelihood (assuming Gaussian posterior)

\[
NLPD = \frac{1}{2|D|} \cdot \sum_{i=1}^{D} \left\{ \log(2\pi \cdot V_*) + \frac{(r_i - r_*)^2}{V_*} \right\}
\]

- an estimate of pred. uncertainty (variance) is necessary
- enables parameter learning from data
- allows better ground truth evaluation
 - comparison of different approaches to GDM
5 Benefits of Predictive Variance

- Comparison: GPM with Kernel DM+V
 - learned via EM/CV (GPM), resp. CV (Kernel DM+V)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GP</th>
<th>GPM</th>
<th>Kernel DM+V</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-rooms</td>
<td>-0.90</td>
<td>-1.54</td>
<td>-1.44</td>
</tr>
<tr>
<td>corridor (avg)</td>
<td>-0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>outdoor</td>
<td>-0.94</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Benefits of Predictive Variance

- Comparison: GPM with Kernel DM+
 - learned via EM/CV (GPM), resp. CV

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GP</th>
<th>GPM</th>
<th>Kernel DM+V</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-rooms</td>
<td>-0.90</td>
<td>-1.54</td>
<td></td>
</tr>
<tr>
<td>corridor (avg)</td>
<td>-0.98</td>
<td>-1.60</td>
<td>-1.81</td>
</tr>
<tr>
<td>outdoor</td>
<td>-0.94</td>
<td>-1.77</td>
<td>-1.75</td>
</tr>
<tr>
<td>Dataset</td>
<td>GP</td>
<td>GPM</td>
<td>Kernel DM+V</td>
</tr>
</tbody>
</table>
5 Benefits of Predictive Variance

- **Comparison:** GPM with Kernel DM+V, learned via EM/CV (GPM), resp. CV (Kernel DM+V)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GP</th>
<th>GPM</th>
<th>Kernel DM+V</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-rooms</td>
<td>-0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corridor (avg)</td>
<td>-0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>outdoor</td>
<td>-0.94</td>
<td>-1.77</td>
<td>-1.75</td>
</tr>
<tr>
<td>Dataset</td>
<td>GP</td>
<td>GPM</td>
<td>Kernel DM+V</td>
</tr>
</tbody>
</table>
Kernel DM+V Extensions – Integration with SLAM
6 Integration with SLAM

- General SLAM Problem

\[p(x^{1:t}, m^t \mid u^{1:t}, z^{1:t}) \]

- simultaneously estimate the map and the robot path given robot actions \(u \) and observations \(z \)
6 Integration with SLAM

- General SLAM Problem

\[p(x^{1:t}, m^t \mid u^{1:t}, z^{1:t}) \]

simultaneously estimate the map and the robot path
given robot actions \(u \) and observations \(z \)

- Simultaneous Localisation and Gas and Occupancy Mapping (GDM/SLAM)

\[m \leftarrow m = (m_{\text{gas}}, m_{\text{occ}}) \]

\[z_t \leftarrow z_t = (z_{\text{gas},t}, z_{\text{occ},t}) \]
6 Integration with SLAM

- GDM/SLAM Problem
 - Rao-Blackwellized particle filter formulation

Kernel DM+V Extensions –
Learning Analytical Dispersal Models from Statistical GDMs
6 Statistical → Analytical Model Analysis

Approach

- interpret statistical GDM using a model from physics
- fit physical model of the average gas concentration to the gas distribution map

\[
\tilde{C}(x, y) = C_0 e^{-C_S r^2} e^{-C_A (r - [(x_S - x) \cos \theta + (y_S - y) \sin \theta])} + C_B
\]

Assumptions

- GDM represents the time-averaged gas concentration
- assumptions of the physical model hold
6 Statistical → Analytical Model Analysis

- **Fit of the Analytical Model**

\[
\tilde{C}(x, y) = C_0 e^{-C_S r^2} e^{-C_A (r - [(x_S - x) \cos \theta + (y_S - y) \sin \theta])} + C_B
\]
Fit of the Analytical Model

\[\tilde{C}(x, y) = C_0 e^{-C_S r^2} e^{-C_A (r - [(x_S - x) \cos \theta + (y_S - y) \sin \theta])} + C_B \]
Kernel DM+V Extensions –
GDM with Multiple Gas Source
6 GDM with Multiple Gas Sources

Approach
6 GDM with Multiple Gas Sources

- Indoor/Outdoor Experiment
 - assuming a single source
6 GDM with Multiple Gas Sources

- Indoor/Outdoor Experiment
 - classification: transient, Wavelet decomposition, SVM

Ongoing and Future Work
7 Ongoing Work

- Diadem
 - larger environments, large sensor networks
7 Ongoing Work

- Diadem
 - larger environments, large sensor networks
 - sensor planning
 - where should the next measurements be carried out? (given the current model)
 - estimation of the required sensor density
 - estimation of the conditions under which statistical models are applicable
7 Ongoing and Future Work

- Time-dependent GDM
 - so far: assumption of a time-constant random process
 - regression approaches can be extended by time dimension
 - density estimation approaches with recency weights
 - use NLPD to learn appropriate recency weights
 - addition of a method to determine the appropriate time-window over which the distribution model is computed
 - lazy update mechanism depending on the NLPD ...
 - ... from cross-validation over the set of measurements (internal consistency)
 - ... over a set of predictions of new samples
Further Ongoing Work

- larger environments, large sensor networks
- optimal sensor planning
 - estimation of the required sensor density
- estimation of the conditions under which statistical models are applicable
- including wind information
Further Ongoing Work

- larger environments, large sensor networks
- optimal sensor planning
 - estimation of the required sensor density
- estimation of the conditions under which statistical models are applicable
 - including wind information
- 3-d gas distribution maps

Matteo Reggente: 3D Statistical Gas Distribution Mapping in an Uncontrolled Indoor Environment
Aula Magna, 17:30 o'clock
Further Ongoing Work

- larger environments, large sensor networks
- optimal sensor planning
 - estimation of the required sensor density
- estimation of the conditions under which statistical models are applicable
 - including wind information
- 3-d gas distribution maps
- 4-d gas distribution maps
 - model gas distribution at different time scales
Future Work

getting rid of the Gaussian posterior assumption

\[
m^{(ij)} = \frac{1}{B(\alpha_1, \ldots, \alpha_N)} \prod_{n=1}^{N} \left(\mu_n^{(ij)} \right)^{\alpha_n^{(ij)}} - 1
\]
7 Future Work

- Future Work
 - getting rid of the Gaussian posterior assumption
 \[
 m^{(ij)} = \frac{1}{B(\alpha_1, \ldots, \alpha_N)} \prod_{n=1}^{N} (\mu_n^{(ij)})^{\alpha_n^{(ij)}-1}
 \]
 - including gas discrimination into gas distribution modelling
 - classification posterior \Rightarrow modelling algorithm
7 Future Work

- Integration of Models from Physics
 - measure spatial outline, heat distribution, wind, etc.
Summary
8 Summary

1. Introduction
8 Summary

1. Introduction

2. Gas Distribution in a Natural Environment
8 Summary

1. Introduction

2. Gas Distribution in a Natural Environment

3. Statistical Gas Distribution Modelling (GDM)
8 Summary

1. Introduction
2. Gas Distribution in a Natural Environment
3. Statistical Gas Distribution Modelling (GDM)
4. Kernel DM+V Algorithm
Summary

1. Introduction
2. Gas Distribution in a Natural Environment
3. Statistical Gas Distribution Modelling (GDM)
4. Kernel DM+V Algorithm
5. Importance of Pred. Variance for GDM

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GP</th>
<th>GPM</th>
<th>Kernel DM+V</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-rooms</td>
<td>-0.90</td>
<td>-1.54</td>
<td>-1.44</td>
</tr>
<tr>
<td>corridor (avg)</td>
<td>-0.98</td>
<td>-1.60</td>
<td>-1.81</td>
</tr>
<tr>
<td>outdoor</td>
<td>-0.94</td>
<td>-1.77</td>
<td>-1.75</td>
</tr>
</tbody>
</table>
8 Summary

1. Introduction
2. Gas Distribution in a Natural Environment
3. Statistical Gas Distribution Modelling (GDM)
4. Kernel DM+V Algorithm
5. Importance of Pred. Variance for GDM
6. Kernel DM+V Extensions
8 Summary

1. Introduction
2. Gas Distribution
3. Statistical Gas Distribution
4. Kernel DM+V Algorithm
5. Importance of Predictive Variance
6. Kernel DM+V Extensions
7. Ongoing and Future Work
Statistical Approaches to Gas Distribution Modelling with Mobile Robots –
The Kernel DM+V Algorithm and Beyond

Thanks for your attention and mental participation!