3D Perception
for Industrial Mobile Robots

Prof. Dr. Achim Lilienthal
contact:
www.aass.oru.se/~lilien
achim.lilienthal@oru.se
1. AASS MR&O Lab – Profile

2. Field Robotics and 3D Perception Projects at AASS

3. Rich 3D for Industrial Applications

4. 3D-NDT Representation

5. Rich 3D Perception – Recent and Ongoing Work
 - NDT-to-NDT Registration
 - Real Time Registration of RGB-D Data using Local Visual Features and 3D-NDT Registration
 - iMAC Occupancy Grid Maps for Representation of Dynamic Environments
 - 3D-NDT in Dynamic Environments (A First Glimpse)
AASS MR&O Lab – Profile
Örebro and its University

- 59°16' north, population ~130k
1. Örebro and its University

- 59°16' north, population ~130k
- ~17k students, ~1200 employees,
- 7 schools, 15 research centers
Örebro and its University
- 59°16' north, population ~130k
- ~17k students, ~1200 employees,
- 7 schools, 15 research centers

Center for Applied Autonomous Sensor Systems
- established in 1998
- largest Swedish research center in robotics
- two research labs
 » Cognitive Robotic Systems lab (CRS)
 » Mobile Robotics and Olfaction lab (MRO)
1. Örebro and its University
 - 59°16' north, population ~130k
 - ~17k students, ~1200 employees,
 - 7 schools, 15 research centers

2. Center for Applied Autonomous Sensor Systems
 - established in 1998
 - largest Swedish research center in robotics
 - two research labs
 - Cognitive Robotic Systems lab
 - Mobile Robotics and Olfaction lab (MRO)
<table>
<thead>
<tr>
<th>Name</th>
<th>Since</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achim J. Lilienthal</td>
<td>Jul 2005</td>
<td>(Ass. Professor)</td>
</tr>
<tr>
<td>Marcello Cirillo</td>
<td>Feb 2011</td>
<td>(Postdoc)</td>
</tr>
<tr>
<td>Todor Stoyanov</td>
<td>Sep 2008</td>
<td>(Postdoc)</td>
</tr>
<tr>
<td>Robert Krug</td>
<td>Sep 2009</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Anani Ananiev</td>
<td>1999</td>
<td>(Ass. Professor)</td>
</tr>
<tr>
<td>Muhammad Asif Arain</td>
<td>Oct 2012</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Daniel Canelhas</td>
<td>Jun 2012</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Krzysztof Charusta</td>
<td>Oct 2012</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Tomasz P. Kucner (ALLO)</td>
<td>Oct 2012</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Rasoul Mojtahedzadeh</td>
<td>Sep 2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Håkan Almqvist</td>
<td>Sep 2009</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Martin Magnusson</td>
<td>2004</td>
<td>(Lecturer)</td>
</tr>
<tr>
<td>Marco Trincavelli</td>
<td>Feb 2011</td>
<td>(Postdoc)</td>
</tr>
<tr>
<td>Ivan Kalaykov</td>
<td>1998</td>
<td>(Professor)</td>
</tr>
<tr>
<td>Mohamad Aldanmad</td>
<td>2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Victor Hernandez Bennetts</td>
<td>Jan 2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Housam Albitar</td>
<td>2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Sahar Asadi</td>
<td>Jan 2009</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Kinan Dandan</td>
<td>2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Roberto Krug</td>
<td>Sep 2009</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Rasoul Mojtahedzadeh</td>
<td>Sep 2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Henrik Andreasson</td>
<td>Sep 2005</td>
<td>(Lecturer)</td>
</tr>
<tr>
<td>Dr. Jari Saarinen</td>
<td>Aug 2012</td>
<td>(Researcher, Aalto)</td>
</tr>
<tr>
<td>Todor Stoyanov</td>
<td>Sep 2008</td>
<td>(Postdoc)</td>
</tr>
<tr>
<td>Marco Trincavelli</td>
<td>Feb 2011</td>
<td>(Postdoc)</td>
</tr>
<tr>
<td>Marco Trincavelli</td>
<td>Feb 2011</td>
<td>(Postdoc)</td>
</tr>
<tr>
<td>Anani Ananiev</td>
<td>1999</td>
<td>(Ass. Professor)</td>
</tr>
<tr>
<td>Ivan Kalaykov</td>
<td>1998</td>
<td>(Professor)</td>
</tr>
<tr>
<td>Mohamad Aldanmad</td>
<td>2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Victor Hernandez Bennetts</td>
<td>Jan 2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Housam Albitar</td>
<td>2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Sahar Asadi</td>
<td>Jan 2009</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Kinan Dandan</td>
<td>2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Rasoul Mojtahedzadeh</td>
<td>Sep 2011</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Tomasz P. Kucner (ALLO)</td>
<td>Oct 2012</td>
<td>(Ph.D. Student)</td>
</tr>
<tr>
<td>Rasoul Mojtahedzadeh</td>
<td>Sep 2011</td>
<td>(Ph.D. Student)</td>
</tr>
</tbody>
</table>

© A. J. Lilienthal et al. (Jul 27, 2012)
D1 – Mobile Robotics

- for autonomous and safe long-term operation in the real world
- technology transfer through collaborative projects with industrial partners in the area of logistics robots
- examples: autonomous forklifts and autonomous wheel loaders
1. Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)

Picking up paper reels at unknown positions
Demonstration held at Vänerhamn, Karlstad 2009-04-03
- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
 - environment with a dynamic "background"
Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)

- environment with a dynamic "background"
- requires 3D sensing

1 meter “drop” to the railway tracks
- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
1. **MR&O Lab Profile – Two Major Research Directions**

- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
- **Wheel Loaders** (VolvoCE, VolvoTech, NCC)
- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
- **Wheel Loaders** (VolvoCE, VolvoTech, NCC)
- **Mining Vehicles** (Atlas Copco, Fotonic)
MR&O Lab Profile – Two Major Research Directions

- Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
- Wheel Loaders (VolvoCE, VolvoTech, NCC)
- Mining Vehicles (Atlas Copco, Fotonic)
- Hospital Transport Vehicles (RobCab)
1. MR&O Lab Profile – Two Major Research Directions

- Forklift Trucks (Danaher Motion, Linde, Stora Enso)
- Wheel Loaders (VolvoCE, VolvoTech, NCC)
- Mining Vehicles (Atlas Copco, Fotonic)
- Hospital Transport Vehicles (RoboCab)
- Garbage Bin Collection and Cleaning (RoboTech)
- D2 – Artificial and Mobile Robot Olfaction
 - Artificial Olfaction = gas sensing with artificial sensor systems
 - we study particularly open sampling systems
 - develop "electronic nose" towards a "mobile nose"
 - examples: gas sensor networks (air pollution monitoring), inspection robots (landfill site surveillance, gas leak localization)
1. MR&O Lab Profile – Two Major Research Directions

- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
- **Wheel Loaders** (VolvoCE, VolvoTech, NCC)
- **Mining Vehicles** (Atlas Copco, Fotonic)
- **Hospital Transport Vehicles** (RobCab)
- **Garbage Bin Collection and Cleaning** (RoboTech)
1. MR&O Lab Profile – Two Major Research Directions

- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
- **Wheel Loaders** (VolvoCE, VolvoTech, NCC)
- **Mining Vehicles** (Atlas Copco, Fotonic)
- **Hospital Transport Vehicles** (RobCab)
- **Garbage Bin Collection and Cleaning** (RoboTech)
 - ... and pollution monitoring
1. **Mobile Work Machines**

- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
- **Wheel Loaders** (VolvoCE, VolvoTech, NCC)
- **Mining Vehicles** (Atlas Copco, Fotonic)
- **Hospital Transport Vehicles**
- **Garbage Bin Collection and Cleaning** (RoboTech)
- **Landfill Site Inspection** (Atleverket)
Field Robotics and
3D Perception Projects at AASS
2. History of "Field Robotics" Projects

 - behavior-based autonomous LHD vehicle navigation in mines
 - main contribution
 - mixed autonomous/teleoperated control
 - (now a commercial product)
History of "Field Robotics" Projects

- NSAL (2005–2012)
 - Multiple autonomous forklifts for loading and transportation applications
 - main contribution
 - navigation without reflectors
 - autonomous paper reel handling
History of "Field Robotics" Projects

- NSAL (2005–2012)
 - Multiple autonomous forklifts for loading and transportation applications
 - Safe autonomous industrial vehicles for industrial environments
 - topics
 - localization w minimum infrastructure (single fish-eye camera, 2D LRF)
 - obstacle detection/avoidance at "high speed"
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
 - Multiple autonomous forklifts for loading and transportation applications
 - Safe autonomous industrial vehicles for industrial environments
 - Topics
 - Localization with minimum infrastructure (single fish-eye camera, 2D LRF)
 - Detection and distance prediction of humans with reflective vest
2.

History of "Field Robotics" Projects

- NSAL (2005–2012)
 - AASS, Kollmorgen, Linde MH
 - Multiple autonomous forklifts for loading and transportation applications
 - Safe autonomous industrial vehicles for industrial environments
 - topics
 - localization w minimum infrastructure (single fish-eye camera, 2D LRF)
 - obstacle detection/avoidance at "high speed"
 - trajectory prediction / path planning, with traffic rules (flexibility + predictability)
History of "Field Robotics" Projects

- **NSAL (2005–2012)**
 - Logistics + safe autonomous vehicle navigation in dynamic environments
History of "Field Robotics" Projects

- **NSAL (2005–2012)**

 » logistics + safe autonomous vehicle navigation in dynamic environments

 - **Objective 2 – Rich 3D Perception**
 - compact 3D representation, registration on compact 3D representations (localization), mapping in dynamic environments, identification of drivable areas, 3D HMT SLAM
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
 - logistics + safe autonomous vehicle navigation in dynamic environments
 - Objective 2 – Rich 3D Perception
 - Objective 1 – Safe Motion
 - collision avoidance, trajectory modification, tracking of vehicles/humans, real-time response
History of "Field Robotics" Projects

- NSAL (2005–2012)

> logistics + safe autonomous vehicle navigation in dynamic environments

- Objective 2 – Rich 3D Perception
- Objective 1 – Safe Motion
- Objective 3 – Hybrid Planning
 - automate mission planning process (mission + motion planning), take into account multiple types of requirements/constraints, incomplete prior knowledge
2. History of "Field Robotics" Projects
 - NSAL (2005–2012)
 - logistics + safe autonomous vehicle navigation in dynamic environments
 - requirements elicited from industrial partners
 - solutions integrated into a "SAUNA System"
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
 - logistics + safe autonomous vehicle navigation in dynamic environments
 - challenges
 - fleets of mixed autonomous and human-operated vehicles
 - high speeds (up to 30-40 km/h)
 - rich 3-D perception for enhanced safety and performance
 - automated mission planning capabilities at several levels of abstraction
 - collision and deadlock avoidance throughout mission planning, trajectory computation and execution
 - flexible operation, accommodation of run-time changes
History of "Field Robotics" Projects

- **NSAL (2005–2012)**
 - logistics + safe autonomous vehicle navigation in dynamic environments
 - challenges ← requirements elicitation from industrial partners
 - fleets of mixed autonomous and human-operated vehicles
 - high speeds (up to 30-40 km/h)
 - rich 3-D perception for enhanced safety and performance
 - automated mission planning capabilities at several levels of abstraction
 - collision and deadlock avoidance throughout mission planning, trajectory computation and execution
 - flexible operation, accommodation of run-time changes
2. History of "Field Robotics" Projects
 - NSAL (2005–2012)
 - SAUNA (2011–2014)
 - All-4-eHAM (2009–2012) AASS, Volvo CE, NCC Roads
 » Autonomous wheel loaders for efficient handling of heterogeneous materials
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- All-4-eHAM (2009–2012) AASS, Volvo CE, NCC Roads

» Autonomous wheel loaders for efficient handling of heterogeneous materials
 - robust autonomous operation in 3D, slowly-changing terrain
 - pile detection and attack pose estimation
 - scanning while moving
 - obstacle and people detection in 3D data
History of "Field Robotics" Projects

- **NSAL (2005–2012)**
- **SAUNA (2011–2014)**
- **All-4-eHAM (2009–2012) → ALLO (2012–2015)**
 - Autonomous wheel loaders for efficient handling of heterogeneous materials
 - Autonomous Long-Term Load-Haul-Dump Operations
 - quantitative evaluation of pile handling and maintenance
 - long-term strategies for pile handling
 - task planning and scheduling (gravel recipes for asphalt production)
 - maintenance of 3D maps in dynamic environments
 - path planning and scheduling in dynamic environments
 - map quality assurance (certification)
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT
 » Unloading Containers (Cognitive Robot for Automation of Logistic Processes)
2. **History of "Field Robotics" Projects**

- NSAL (2005–2012)
- SAUNA (2011–2014)
- RobLog (2011–2015) AASS, Vollers, Qubica, BIB.

 » Unloading Containers
 - industrial scenario (coffee sacks)
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT

 » Unloading Containers
 - industrial scenario (coffee sacks)
 - advanced scenario
History of "Field Robotics" Projects

- **NSAL (2005–2012)**
- **SAUNA (2011–2014)**
- **All-4-eHAM (2009–2012) → ALLO (2012–2015)**
 - Unloading Containers
 - industrial scenario (coffee sacks)
 - advanced scenario

Field Robotics and 3D Perception Projects at AASS
History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT
 - Unloading Containers
 - industrial scenario (coffee sacks)
 - advanced scenario
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- **SPENCER (2013–2016)** AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg
 - group-friendly navigation
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- SPENCER (2013–2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg
 - group-friendly navigation
 - identification of likely spokespersons
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- **SPENCER (2013–2016)**
 - AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg
 - group-friendly navigation
 - identification of likely spokespersons
 - Schengen fast track scenario
History of "Field Robotics" Projects

- **NSAL (2005–2012)**
- **SAUNA (2011–2014)**
- **All-4-eHAM (2009–2012) → ALLO (2012–2015)**
- **SPENCER (2013–2016)**
 - **AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg**

 » **challenges**
 - localization and mapping in dynamic and social environments
 - identify dynamics of objects
 - → robust and precise localization in highly dynamic environments
 - learning of socially annotated maps
 - related to spatial event distribution models
3D-NDT in Dynamic Environments
(A First Glimpse)
5. **3D-NDT Model Maintenance (Saarinen et al.)**
 - online updates
5. **3D-NDT Model Maintenance (Saarinen et al.)**

- online updates
- create model at different timescales (diff \rightarrow dyn. objects)
3D Perception for Industrial Mobile Robots

Prof. Dr. Achim Lilienthal
contact:
www.aass.oru.se/~lilien
achim.lilienthal@oru.se