3D Perception for Transport and Inspection Robots

Prof. Dr. Achim Lilienthal
contact:
www.aass.oru.se/~lilien
achim.lilienthal@oru.se
1. AASS MR&O Lab – Profile

2. Field Robotics and 3D Perception Projects at AASS

3. Rich 3D for Industrial Applications

4. 3D-NDT Representation

5. Rich 3D Perception – Recent and Ongoing Work
 - NDT-to-NDT Registration
 - Real Time Registration of RGB-D Data using Local Visual Features and 3D-NDT Registration
 - iMAC Occupancy Grid Maps for Representation of Dynamic Environments
 - 3D-NDT in Dynamic Environments (A First Glimpse)
AASS MR&O Lab – Profile
Örebro and its University

- 59°16' north, population ~130k
1. Örebro and its University

- 59°16' north, population ~130k
- ~17k students, ~1200 employees,
- 7 schools, 15 research centers
1. Örebro and its University
 - 59°16' north, population ∼130k
 - ∼17k students, ∼1200 employees,
 - 7 schools, 15 research centers

2. Center for Applied Autonomous Sensor Systems
 - established in 1998
 - largest Swedish research center in robotics
 - two research labs
 » Cognitive Robotic Systems lab (CRS)
 » Mobile Robotics and Olfaction lab (MRO)
1. Örebro and its University
 - 59°16' north, population ~130k
 - ~17k students, ~1200 employees,
 - 7 schools, 15 research centers

2. Center for Applied Autonomous Sensor Systems
 - established in 1998
 - largest Swedish research center in robotics
 - two research labs
 - Cognitive Robotic Systems lab
 - Mobile Robotics and Olfaction lab (MRO)
General Focus ...
- perception systems for mobile robots
 (fundamentals for autonomous and safe operation)

Objective ...
- advance theoretical and practical foundations that allow mobile robots to operate in an unconstrained, dynamic environment

Approaches are Characterized by ...
- fusion of different sensor modalities
- timely integration into industrial demonstrators
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Since</th>
</tr>
</thead>
<tbody>
<tr>
<td>Håkan Almqvist</td>
<td>Ph.D. Student</td>
<td>Sep 2009</td>
</tr>
<tr>
<td>Achim J. Lilienthal</td>
<td>Associate Professor</td>
<td>Jul 2005</td>
</tr>
<tr>
<td>Robert Krug</td>
<td>Ph.D. Student</td>
<td>Sep 2009</td>
</tr>
<tr>
<td>Anani Ananiev</td>
<td>Associate Professor</td>
<td>1999</td>
</tr>
<tr>
<td>Krzysztof Charusta</td>
<td>Ph.D. Student</td>
<td>Oct 2012</td>
</tr>
<tr>
<td>Marcello Cirillo</td>
<td>Postdoc</td>
<td>Feb 2011</td>
</tr>
<tr>
<td>Houssam Albitar</td>
<td>Ph.D. Student</td>
<td>Nov 2011</td>
</tr>
<tr>
<td>Daniel Canelhas</td>
<td>Ph.D. Student</td>
<td>Jun 2012</td>
</tr>
<tr>
<td>Victor Hernandez Bennetts</td>
<td>Ph.D. Student</td>
<td>Jan 2011</td>
</tr>
<tr>
<td>Todor Stoyanov</td>
<td>Postdoc</td>
<td>Sep 2008</td>
</tr>
<tr>
<td>Martin Magnusson</td>
<td>Lecturer</td>
<td>2004</td>
</tr>
<tr>
<td>Marco Trincavelli</td>
<td>Postdoc</td>
<td>Feb 2011</td>
</tr>
<tr>
<td>Mohammad Aldanmad</td>
<td>Ph.D. Student</td>
<td>Nov 2011</td>
</tr>
<tr>
<td>Todor Stoyanov</td>
<td>Postdoc</td>
<td>Sep 2008</td>
</tr>
<tr>
<td>Sahar Asadi</td>
<td>Ph.D. Student</td>
<td>Jan 2009</td>
</tr>
<tr>
<td>Rasoul Mojtahedzadeh</td>
<td>Ph.D. Student</td>
<td>Sep 2011</td>
</tr>
<tr>
<td>Tomasz P. Kucner (ALLO)</td>
<td>Ph.D. Student</td>
<td>Oct 2012</td>
</tr>
<tr>
<td>Ivan Kalaykov</td>
<td>Professor</td>
<td>1998</td>
</tr>
<tr>
<td>Hakan Almqvist</td>
<td>Ph.D. Student</td>
<td>Sep 2009</td>
</tr>
<tr>
<td>Anani Ananiev</td>
<td>Associate Professor</td>
<td>1999</td>
</tr>
<tr>
<td>Krzysztof Charusta</td>
<td>Ph.D. Student</td>
<td>Oct 2012</td>
</tr>
<tr>
<td>Victor Hernandez Bennetts</td>
<td>Ph.D. Student</td>
<td>Jan 2011</td>
</tr>
<tr>
<td>Rasoul Mojtahedzadeh</td>
<td>Ph.D. Student</td>
<td>Sep 2011</td>
</tr>
</tbody>
</table>
1. **D1 – Mobile Robotics**
 - for autonomous and safe long-term operation in the real world
 - technology transfer through collaborative projects with industrial partners in the area of logistics robots
 - examples: autonomous forklifts and autonomous wheel loaders
Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)

Picking up paper reels at unknown positions
Demonstration held at Vänerhamn, Karlstad 2009-04-03

speed x 2
- Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
 - environment with a dynamic "background"
- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
 - environment with a dynamic "background"
 - requires 3D sensing

1 meter “drop” to the railway tracks
1. **Forklift Trucks** *(Danaher Motion, Linde MH, Stora Enso)*

(speed x 1)
MR&O Lab Profile – Two Major Research Directions

- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
- **Wheel Loaders** (VolvoCE, VolvoTech, NCC)
MR&O Lab Profile – Two Major Research Directions

- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
- **Wheel Loaders** (VolvoCE, VolvoTech, NCC)
- **Mining Vehicles** (Atlas Copco, Fotonic)
1. MR&O Lab Profile – Two Major Research Directions

- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
- **Wheel Loaders** (VolvoCE, VolvoTech, NCC)
- **Mining Vehicles** (Atlas Copco, Fotonic)
- **Hospital Transport Vehicles** (RobCab)
MR&O Lab Profile – Two Major Research Directions

- Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
- Wheel Loaders (VolvoCE, VolvoTech, NCC)
- Mining Vehicles (Atlas Copco, Fotonic)
- Hospital Transport Vehicles (RoboCab)
- Garbage Bin Collection and Cleaning (RoboTech)
D2 – Artificial and Mobile Robot Olfaction

- Artificial Olfaction = gas sensing with artificial sensor systems
- we study particularly open sampling systems
- develop "electronic nose" towards a "mobile nose"
- examples: gas sensor networks (air pollution monitoring), inspection robots (landfill site surveillance, gas leak localization)
1. MR&O Lab Profile – Two Major Research Directions

- **Forklift Trucks** (Danaher Motion, Linde MH, Stora Enso)
- **Wheel Loaders** (VolvoCE, VolvoTech, NCC)
- **Mining Vehicles** (Atlas Copco, Fotonic)
- **Hospital Transport Vehicles** (RobCab)
- **Garbage Bin Collection and Cleaning** (RoboTech)
MR&O Lab Profile – Two Major Research Directions

- Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
- Wheel Loaders (VolvoCE, VolvoTech, NCC)
- Mining Vehicles (Atlas Copco, Fotonic)
- Hospital Transport Vehicles (RobCab)
- Garbage Bin Collection and Cleaning (RoboTech)
 - ... and pollution monitoring
- Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
- Wheel Loaders (VolvoCE, VolvoTech, NCC)
- Mining Vehicles (Atlas Copco, Fotonic)
- Hospital Transport Vehicles
- Garbage Bin Collection and Cleaning (RoboTech)
- Landfill Site Inspection (Atleverket)
Field Robotics and
3D Perception Projects at AASS
History of "Field Robotics" Projects

○ NSAL (2005–2012) AASS (CRS Lab), Atlas Copco
 » behavior-based autonomous LHD vehicle navigation in mines
 » main contribution
 • mixed autonomous/teleoperated control
 (now a commercial product)
2. History of "Field Robotics" Projects

- NSAL (2005–2012)

 » Multiple autonomous forklifts for loading and transportation applications
 » main contribution
 - navigation without reflectors
 - autonomous paper reel handling
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
 - Multiple autonomous forklifts for loading and transportation applications
 - Safe autonomous industrial vehicles for industrial environments
 - topics
 - localization w minimum infrastructure (single fish-eye camera, 2D LRF)
 - obstacle detection/avoidance at "high speed"
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
 » Multiple autonomous forklifts for loading and transportation applications
 » Safe autonomous industrial vehicles for industrial environments
 » Topics
 - Localization with minimum infrastructure (single fish-eye camera, 2D LRF)
 - Detection and distance prediction of humans with reflective vest
History of "Field Robotics" Projects

- **NSAL (2005–2012)**
 - Multiple autonomous forklifts for loading and transportation applications
 - Safe autonomous industrial vehicles for industrial environments
 - topics
 - localization w minimum infrastructure (single fish-eye camera, 2D LRF)
 - obstacle detection/avoidance at "high speed"
 - trajectory prediction / path planning, with traffic rules (➔ flexibility + predictability)
History of "Field Robotics" Projects

- NSAL (2005–2012)
 » logistics + safe autonomous vehicle navigation in dynamic environments
History of "Field Robotics" Projects

- NSAL (2005–2012)

 » logistics + safe autonomous vehicle navigation in dynamic environments

 - Objective 2 – Rich 3D Perception
 - compact 3D representation, registration on compact 3D representations (localization), mapping in dynamic environments, identification of drivable areas, 3D HMT SLAM
History of "Field Robotics" Projects

- NSAL (2005–2012)

» logistics + safe autonomous vehicle navigation in dynamic environments
 - Objective 2 – Rich 3D Perception
 - Objective 1 – Safe Motion
 - collision avoidance, trajectory modification, tracking of vehicles/humans, real-time response
2. History of "Field Robotics" Projects

- **NSAL (2005–2012)**
 - Logistics + safe autonomous vehicle navigation in dynamic environments
 - Objective 2 – Rich 3D Perception
 - Objective 1 – Safe Motion
 - Objective 3 – Hybrid Planning
 - Automate mission planning process (mission + motion planning), take into account multiple types of requirements/constraints, incomplete prior knowledge
2. History of "Field Robotics" Projects
 - NSAL (2005–2012)

 » logistics + safe autonomous vehicle navigation in dynamic environments
 - requirements elicited from industrial partners
 - → solutions integrated into a "SAUNA System"
2. History of "Field Robotics" Projects

- **NSAL (2005–2012)**
 - logistics + safe autonomous vehicle navigation in dynamic environments
 - challenges
 - fleets of mixed autonomous and human-operated vehicles
 - high speeds (up to 30-40 km/h)
 - rich 3-D perception for enhanced safety and performance
 - automated mission planning capabilities at several levels of abstraction
 - collision and deadlock avoidance throughout mission planning, trajectory computation and execution
 - flexible operation, accommodation of run-time changes
2. History of "Field Robotics" Projects

- **NSAL (2005–2012)**
 - Logistics + safe autonomous vehicle navigation in dynamic environments
 - Challenges ← requirements elicitation from industrial partners
 - Fleets of mixed autonomous and human-operated vehicles
 - High speeds (up to 30-40 km/h)
 - Rich 3-D perception for enhanced safety and performance
 - Automated mission planning capabilities at several levels of abstraction
 - Collision and deadlock avoidance throughout mission planning, trajectory computation and execution
 - Flexible operation, accommodation of run-time changes
History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- All-4-eHAM (2009–2012) \(^{\text{AASS, Volvo CE, NCC Roads}}\)
 - Autonomous wheel loaders for efficient handling of heterogeneous materials
History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- All-4-eHAM (2009–2012) AASS, Volvo CE, NCC Roads

» Autonomous wheel loaders for efficient handling of heterogeneous materials
 - robust autonomous operation in 3D, slowly-changing terrain
 - pile detection and attack pose estimation
 - scanning while moving
 - obstacle and people detection in 3D data
History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)

 » Autonomous wheel loaders for efficient handling of heterogeneous materials
 » Automomous Long-Term Load-Haul-Dump Operations
 - quantitative evaluation of pile handling and maintenance
 - long-term strategies for pile handling
 - task planning and scheduling (gravel recipes for asphalt production)
 - maintenance of 3D maps in dynamic environments
 - path planning and scheduling in dynamic environments
 - map quality assurance (certification)
History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT
 » Unloading Containers (Cognitive Robot for Automation of Logistic Processes)
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- RobLog (2011–2015) AASS, Vollers, Qubica, BIBA

» Unloading Containers
 - industrial scenario (coffee sacks)
History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, HSRT

- Unloading Containers
 - industrial scenario (coffee sacks)
 - advanced scenario
History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT
 » Unloading Containers
 • industrial scenario (coffee sacks)
 • advanced scenario
History of "Field Robotics" Projects

- **NSAL** (2005–2012)
- **SAUNA** (2011–2014)
- **All-4-eHAM** (2009–2012) → **ALLO** (2012–2015)
- **RobLog** (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT

 - Unloading Containers
 - industrial scenario (coffee sacks)
 - advanced scenario
History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- SPENCER (2013–2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg
 » group-friendly navigation
2. History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- **SPENCER (2013–2016)** AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg
 - group-friendly navigation
 - identification of likely spokespersons
History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- SPENCER (2013–2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg
 - group-friendly navigation
 - identification of likely spokespersons
 - Schengen fast track scenario
History of "Field Robotics" Projects

- NSAL (2005–2012)
- SAUNA (2011–2014)
- **SPENCER (2013–2016)** AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg

- challenges
 - localization and mapping in dynamic and social environments
 - identify dynamics of objects
 - robust and precise localization in highly dynamic environments
 - learning of socially annotated maps
 - related to spatial event distribution models
Rich 3D for Industrial Applications
3D Perception Requirements

- ... depend heavily on the application scenario, e.g. SAUNA, RobLog
- we consider also an inspection robot that senses
 - range
 - colour
 - temperature
 - gas
 - air flow
 - humidity
3D Perception Requirements

- detailed model (detailed "enough")
 - SAUNA: allows extraction of drivable area at reasonably high speeds
3D Perception Requirements

- detailed model (detailed "enough")
 - SAUNA: allows extraction of drivable area at reasonably high speeds
 - RobLog: allows identification of objects from partial views (occlusion)
 - allows inference (predicting future states)
3D Perception Requirements

- detailed model (detailed "enough")
 - SAUNA: allows extraction of drivable area at reasonably high speeds
 - RobLog: allows identification of objects from partial views (occlusion)
 - allows inference (predicting future states)
 - Inspection Robot: allows for detection of changes that are of potential interest to human decision makers
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
 - SAUNA: model uncertainty between distant measurements
 - RobLog: dense enough for object recognition
 - Inspection Robot: change detection for arbitrary points in space from non-aligned measurements
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
 - often large amount of data
 - compact \iff memory requirements do not scale with time but with the size of the environment
 - queries often faster in a compact model
 - compact yet truthful and versatile representation required
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
 - SAUNA: allows for real-time and long-term operation
 - SAUNA: all operations need to be carried out on the compact model
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
 - SAUNA: allows for real-time and long-term operation
 - SAUNA: all operations need to be carried out on the compact model
 - Inspection Robot: detect changes compared to old model
3. 3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
 - model should represent uncertainty about the state of the world
 - can be in a separate layer
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
 - layers carry most of the meaning
 - object labels + corresponding uncertainty
 - semantic categories + corresponding uncertainty
 - distribution of social behaviours, temperature, colour, gas, ...
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
 - layers carry most of the meaning
 - object labels + corresponding uncertainty
 - semantic categories + corresponding uncertainty
 - distribution of social behaviours, temperature, colour, gas, ...
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
- maintenance of model in a dynamic environment
 - online update
 - representation of changes over time
 - representation of different dynamics
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
- maintenance of model in a dynamic environment
 - online update
 - representation of changes over time
 - representation of different dynamics
 - changes against different time scales
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
- maintenance of model in a dynamic environment
 - online update
 - representation of changes over time
 - representation of different dynamics
 - changes against different time scales

Less Dynamic
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
- maintenance of model in a dynamic environment
 - online update
 - representation of changes over time
 - representation of different dynamics
 - changes against different time scales
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
- maintenance of model in a dynamic environment
 - online update
 - representation of changes over time
 - representation of different dynamics
 - changes against different time scales
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
- maintenance of model in a dynamic environment
 - online update
 - representation of changes over time
 - representation of different dynamics
 - changes against different time scales
 - model different dynamics explicitly (static, fully dynamic, alternating, semi-static, ...)

© A. J. Lilienthal et al. (Jul 26, 2012)
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model

- maintenance of model in a dynamic environment
 - online update
 - representation of changes over time
 - representation of different dynamics

- use of dynamic map
 - discard dynamic areas for localization
 - assign lower weight depending on dynamics and last observation
 - take dynamics into account for planning and scheduling
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
- maintenance and use of model in a dynamic environment
- sensor planning
 - Inspection Robot: build dense model that allows to detect changes at arbitrary points in space
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
- maintenance and use of model in a dynamic environment
- sensor planning
- scanning-while-moving
 » ALL-4-eHAM → necessary?
3D Perception Requirements

- detailed model
- dense (quasi-continuous) model from sparse measurements
- compact model
- probabilistic model
- layered model
- maintenance and use of model in a dynamic environment
- sensor planning
- scanning-while-moving
- robustness
 - outdoor conditions
 - graceful degradation wrt errors
3D Perception Requirements \(\rightarrow\) Does Rich 3D Help?

- detailed model (detailed "enough")
 - extraction of drivable area, object recognition, change detection
- dense (quasi-continuous) model from sparse measurements
 - change detection for arbitrary points in space
- compact model
 - compact yet truthful representation \(\rightarrow\) real-time and long-term operation
- probabilistic model
 - represent uncertainty about the state of the world
- layered model
 - layers often carry most of map meaning
- maintenance and use of model in a dynamic environment
 - representation of changes and dynamics, use for localization and planning
- sensor planning
- robustness
3. **3D Perception Requirements → Does Rich 3D Help?**

- **Detailed model** (detailed "enough")
 - extraction of drivable area, object recognition, change detection

- **Dense (quasi-continuous) model from sparse measurements**
 - change detection for arbitrary points in space

- **Compact model**
 - compact yet truthful representation → real-time and long-term operation

- **Probabilistic model**
 - represent uncertainty about the state of the world

- **Layered model**
 - layers often carry most of map meaning

- **Maintenance and use of model in a dynamic environment**
 - representation of changes and dynamics, use for localization and planning

- **Sensor planning**

- **Robustness**

Rich 3D?

- Better extrapolation on sparse measurements
- Additional information → key points
- Rich 3D models may often be layered maps
- Also required for rich 3D
- E.g. localization in feature-sparse areas
3D-NDT Representation
(2D) Normal Distributions Transform (NDT)

- originally developed for 2D scan registration [Biber et al., 2003]
- sparse (grid-based) Gaussian mixture model
 - space is partitioned in disjoint voxels (cells)
 - Gaussian pdf, parametrized by a Covariance matrix and mean used to represent space in each cell
- 3D Normal Distributions Transform (3D-NDT)
 - extension to 3D scan registration [Magnusson et al., 2007]
 - 3D-NDT is sparse

Number of Points: 87,778

Gaussian Components: 1741
3D Normal Distributions Transform (3D-NDT)

- extension to 3D scan registration [Magnusson et al., 2007]
- 3D-NDT is
 - sparse
 - useful for 3D registration
 - Point-to-NDT [Magnusson et al., 2007]
3D Normal Distributions Transform (3D-NDT)

- extension to 3D scan registration [Magnusson et al., 2007]

- 3D-NDT is
 - sparse
 - useful for 3D registration
 - Point-to-NDT
 [Magnusson et al., 2007]
 - NDT-to-NDT
 [Stoyanov et al., 2012]
4. **3D Normal Distributions Transform (3D-NDT)**
 - extension to 3D scan registration [Magnusson et al., 2007]
 - 3D-NDT is
 - sparse
 - useful for 3D registration
 - useful for change detection
3D Normal Distributions Transform (3D-NDT)

- extension to 3D scan registration [Magnusson et al., 2007]
- 3D-NDT is
 - sparse
 - useful for 3D registration
 - useful for change detection
 - useful for place recognition [Magnusson et al., 2009]
Rich 3D Perception –
Recent and Ongoing Work
NDT-to-NDT Registration
NDT-2-NDT Registration [Stoyanov et al., 2012]

○ registration
- **NDT-2-NDT Registration [Stoyanov et al., 2012]**
 - registration with ICP (iterative closest point)
5. **NDT-2-NDT Registration** [Stoyanov et al., 2012]
 - registration with ICP (iterative closest point)
NDT-2-NDT Registration [Stoyanov et al., 2012]
- registration with ICP (iterative closest point)
5. **NDT-2-NDT Registration [Stoyanov et al., 2012]**
 - registration with ICP (iterative closest point)
- NDT-2-NDT Registration [Stoyanov et al., 2012]
 - registration with ICP (iterative closest point)
NDT-2-NDT Registration [Stoyanov et al., 2012]

- registration with ICP (iterative closest point)
5. **NDT-2-NDT Registration [Stoyanov et al., 2012]**

- registration with ICP (iterative closest point)
NDT-2-NDT Registration [Stoyanov et al., 2012]

- registration with ICP (iterative closest point)
- registration with 3D-NDT (Point-to-NDT)
5. **NDT-2-NDT Registration [Stoyanov et al., 2012]**

- registration with ICP (iterative closest point)
- registration with 3D-NDT (Point-to-NDT)
5. **NDT-2-NDT Registration [Stoyanov et al., 2012]**

- registration with ICP (iterative closest point)
- registration with 3D-NDT (Point-to-NDT)
NDT-2-NDT Registration [Stoyanov et al., 2012]

- registration with ICP (iterative closest point)
- registration with 3D-NDT (Point-to-NDT)
5. **NDT-2-NDT Registration** [Stoyanov et al., 2012]

- registration with ICP (iterative closest point)
- registration with 3D-NDT (Point-to-NDT)
5. **NDT-2-NDT Registration [Stoyanov et al., 2012]**
 - registration with ICP (iterative closest point)
 - registration with 3D-NDT (Point-to-NDT)
- **NDT-2-NDT Registration [Stoyanov et al., 2012]**
 - registration with ICP (iterative closest point)
 - registration with 3D-NDT (Point-to-NDT)
Rich 3D Perception Work at AASS

NDT-2-NDT Registration [Stoyanov et al., 2012]
- registration with ICP (iterative closest point)
- registration with 3D-NDT (Point-to-NDT)
NDT-2-NDT Registration [Stoyanov et al., 2012]
- registration with ICP (iterative closest point)
- registration with 3D-NDT (Point-to-NDT)
- registration with 3D-NDT (NDT-to-NDT)
5. NDT-2-NDT Registration [Stoyanov et al., 2012]
 - registration with ICP (iterative closest point)
 - registration with 3D-NDT (Point-to-NDT)
 - registration with 3D-NDT (NDT-to-NDT)
- NDT-2-NDT Registration [Stoyanov et al., 2012]
 - registration with ICP (iterative closest point)
 - registration with 3D-NDT (Point-to-NDT)
 - registration with 3D-NDT (NDT-to-NDT)
5. Rich 3D Perception Work at AASS

- NDT-2-NDT Registration [Stoyanov et al., 2012]
 - registration with ICP (iterative closest point)
 - registration with 3D-NDT (Point-to-NDT)
 - registration with 3D-NDT (NDT-to-NDT)
5. **NDT-2-NDT Registration** [Stoyanov et al., 2012]
 - registration with ICP (iterative closest point)
 - registration with 3D-NDT (Point-to-NDT)
 - registration with 3D-NDT (NDT-to-NDT)
NDT-2-NDT Registration [Stoyanov et al., 2012]

- registration with ICP (iterative closest point)
- registration with 3D-NDT (Point-to-NDT)
- registration with 3D-NDT (NDT-to-NDT)
 - compute 3D-NDT for both scans \(M_{\text{NDT}}(\mathcal{P}_1), M_{\text{NDT}}(\mathcal{P}_2) \)
 - compute likelihood of \(M_{\text{NDT}}(\mathcal{P}_2) \) given \(M_{\text{NDT}}(\mathcal{P}_1) \)
 - find (local) maximum using Newton's method and analytical derivative expressions

Rich 3D Perception Work at AASS
NDT-2-NDT Registration [Stoyanov et al., 2012]

- registration with ICP (iterative closest point)
- registration with 3D-NDT (Point-to-NDT)
- registration with 3D-NDT (NDT-to-NDT)
 - compute 3D-NDT for both scans \(M_{\text{NDT}}(P_1), M_{\text{NDT}}(P_2) \)
 - compute likelihood of \(M_{\text{NDT}}(P_2) \) given \(M_{\text{NDT}}(P_1) \)
 - find (local) maximum using Newton's method and analytical derivative expressions
 - hot start
NDT-2-NDT Registration [Stoyanov et al., 2012]

- registration with ICP (iterative closest point)
- registration with 3D-NDT (Point-to-NDT)
- registration with 3D-NDT (NDT-to-NDT)
 - compute 3D-NDT for both scans \(M_{\text{NDT}}(\mathcal{P}_1), M_{\text{NDT}}(\mathcal{P}_2) \)
 - compute likelihood of \(M_{\text{NDT}}(\mathcal{P}_2) \) given \(M_{\text{NDT}}(\mathcal{P}_1) \)
 - find (local) maximum using Newton's method and analytical derivative expressions
 - hot start
 - derive a simple initialization, based on the 3D-NDT Histogram
 - look for transformation resulting in best overlap between histograms.
 - select one or several of the best initial guesses
NDT-2-NDT Registration [Stoyanov et al., 2012]

- tested over two data sets — indoor and outdoor, 3D aLRF

indoor: 60 point clouds
"AASS Loop"

outdoor: 469 point clouds
"AASS Loop"
5. NDT-2-NDT Registration [Stoyanov et al., 2012]

- results
 - translation deviation from known ground truth transformations

![Error Norm Translation AASS](chart.png)
5. **NDT-2-NDT Registration [Stoyanov et al., 2012]**
 - results
 - translation deviation from known ground truth transformations
NDT-2-NDT Registration [Stoyanov et al., 2012]

- results
 - translation deviation from known ground truth transformations

![Error Norm Translation AASS](chart.png)
5. NDT-2-NDT Registration [Stoyanov et al., 2012]

- results
 - translation deviation from known ground truth transformations
NDT-2-NDT Registration [Stoyanov et al., 2012]

- results
 - translation deviation from known ground truth transformations
 - only successful registrations (inliers) → much better convergence of 3D-NDT
NDT-2-NDT Registration [Stoyanov et al., 2012]

- results
 - translation deviation from known ground truth transformations
 - only successful registrations (inliers) → much better convergence of 3D-NDT
5. NDT-2-NDT Registration [Stoyanov et al., 2012]

- results
 - translation deviation from known ground truth transformations
 - only successful registrations (inliers) → much better convergence of 3D-NDT
 - percentage of inliers highest for NDT-to-NDT and increases when using hotstart

![Bar chart showing percentage of inliers for different methods]

Percentage of Inliers AASS

- ICP
- ICPHist
- NDT-P2
- NDT-P2Hist
- NDT-D2
- NDT-D2Hist
NDT-2-NDT Registration [Stoyanov et al., 2012]

- results
 - translation deviation from known ground truth transformations
 - only successful registrations (inliers) → much better convergence of 3D-NDT
 - percentage of inliers highest for NDT-to-NDT and increases when using hotstart
 - average runtimes for NDT-to-NDT at around 500 milliseconds
NDT-2-NDT Registration [Stoyanov et al., 2012]

- results
 - translation deviation from known ground truth transformations
 - only successful registrations (inliers) → much better convergence of 3D-NDT
 - percentage of inliers highest for NDT-to-NDT and increases when using hotstart
 - average runtimes for NDT-to-NDT at around 500 milliseconds
 - runtime increases when using hotstart, but NDT-to-NDT with hotstart still faster than the other two implementations
Real Time Registration of RGB-D Data using Local Visual Features and 3D-NDT Registration
5. **Sparse Rich 3D-NDT Registration** [Andreasson et al., 2012]

- find local visual features (SURF) from (Kinect) image data
- find closest matches and corresponding depth values (match candidates)
- RANSAC on feature pairs
 - initial transformation estimate (hot start)
- compute 3D-NDT components only for surrounding regions of match candidates
 - fixed support size
5.

Sparse Rich 3D-NDT Registration [Andreasson et al., 2012]

- test data from [Sturm et al., 2011]
 - "Towards a Benchmark for RGBD SLAM Evaluation".
5. **Sparse Rich 3D-NDT Registration** [Andreasson et al., 2012]

- test data from [Sturm et al., 2011]
- test of different registration variations
 - RGB images downscaled by 1/4 (side length, for real-time performance)
Sparse Rich 3D-NDT Registration [Andreasson et al., 2012]

- test data from [Sturm et al., 2011]
- test of different registration variations
 - RGB images downscaled by 1/4 (side length, for real-time performance)
 - comparison of "NDT F" with [Steinbrucker et al., 2011]
Sparse Rich 3D-NDT Registration [Andreasson et al., 2012]

- test data from [Sturm et al., 2011]
- test of different registration variations
 - RGB images downscaled by 1/4 (side length, for real-time performance)
 - comparison of "NDT F" with [Steinbrucker et al., 2011]

<table>
<thead>
<tr>
<th>Dataset</th>
<th>\bar{x} (m)</th>
<th>\tilde{x} (m)</th>
<th>$\bar{\theta}$ (deg)</th>
<th>$\tilde{\theta}$ (deg)</th>
<th>f_{ps} (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-360</td>
<td>0.014</td>
<td>0.010</td>
<td>0.592</td>
<td>0.483</td>
<td>17.5</td>
</tr>
<tr>
<td>1-desk2</td>
<td>0.016</td>
<td>0.012</td>
<td>1.009</td>
<td>0.820</td>
<td>15.3</td>
</tr>
<tr>
<td>1-floor</td>
<td>0.015</td>
<td>0.007</td>
<td>1.027</td>
<td>0.402</td>
<td>24.1</td>
</tr>
<tr>
<td>1-room</td>
<td>0.011</td>
<td>0.008</td>
<td>0.635</td>
<td>0.502</td>
<td>13.8</td>
</tr>
<tr>
<td>1-desk</td>
<td>0.0165</td>
<td>0.0122</td>
<td>1.1567</td>
<td>0.909</td>
<td>14.4</td>
</tr>
<tr>
<td>G-ICP [13]</td>
<td>0.0103</td>
<td>-</td>
<td>0.0154</td>
<td>-</td>
<td>0.13</td>
</tr>
<tr>
<td>Steinbrücker [4]</td>
<td>0.0053</td>
<td>-</td>
<td>0.0065</td>
<td>-</td>
<td>12.5</td>
</tr>
<tr>
<td>2-desk</td>
<td>0.0048</td>
<td>0.0039</td>
<td>0.3413</td>
<td>0.2961</td>
<td>19.7</td>
</tr>
<tr>
<td>G-ICP [13]</td>
<td>0.0062</td>
<td>-</td>
<td>0.0060</td>
<td>-</td>
<td>0.13</td>
</tr>
<tr>
<td>Steinbrücker [4]</td>
<td>0.0015</td>
<td>-</td>
<td>0.0027</td>
<td>-</td>
<td>12.5</td>
</tr>
</tbody>
</table>
iMAC Occupancy Grid Maps for Representation of Dynamic Environments
5. **iMAC Occupancy Grid Maps** [Saarinen et al., 2012]

- Jari Saarinen, Henrik Andreasson, and Achim J. Lilienthal.
 "Independent Markov Chain Occupancy Grid Maps for Representation of Dynamic Environments".
5. **iMAC Occupancy Grid Maps** [Saarinen et al., 2012]
 - model each cell as an independent Markov chain
5. **iMAC Occupancy Grid Maps** [Saarinen et al., 2012]
 - model each cell as an independent Markov chain
 - learn Poisson rate parameters for exit and entry process

\[
\hat{\lambda}_{\text{exit}} = \frac{\alpha_{\text{exit}}}{\beta_{\text{exit}}} = \frac{\text{#events: occupied to free} + 1}{\text{#observations when occupied} + 1}
\]

\[
\hat{\lambda}_{\text{entry}} = \frac{\alpha_{\text{entry}}}{\beta_{\text{entry}}} = \frac{\text{#events: free to occupied} + 1}{\text{#observations when free} + 1}
\]
iMAC Occupancy Grid Maps [Saarinen et al., 2012]

- model each cell as an independent Markov chain
- learn Poisson rate parameters for exit and entry process
- identify different dynamics based on learned Poisson parameters

\[
\hat{\lambda}_{\text{exit}} = \frac{\alpha_{\text{exit}}}{\beta_{\text{exit}}} = \frac{\#\text{events: occupied to free} + 1}{\#\text{observations when occupied} + 1}
\]

\[
\hat{\lambda}_{\text{entry}} = \frac{\alpha_{\text{entry}}}{\beta_{\text{entry}}} = \frac{\#\text{events: free to occupied} + 1}{\#\text{observations when free} + 1}
\]

<table>
<thead>
<tr>
<th>Functional state</th>
<th>(\hat{\lambda}_{\text{exit}})</th>
<th>(\hat{\lambda}_{\text{entry}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static occupied</td>
<td>(\rightarrow 0)</td>
<td>High</td>
</tr>
<tr>
<td>Static free</td>
<td>High</td>
<td>(\rightarrow 0)</td>
</tr>
<tr>
<td>Semi-static</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Dynamic</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Semi-static occupied (doors)</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>
iMAC Occupancy Grid Maps [Saarinen et al., 2012]
- model each cell as an independent Markov chain
- learn Poisson rate parameters for exit and entry process
- identify different dynamics based on learned Poisson parameters
- use recency-weighted approach
5. \textbf{iMAC Occupancy Grid Maps} [Saarinen et al., 2012]

- model each cell as an independent Markov chain
- learn Poisson rate parameters for exit and entry process
- use rate parameters as estimate of state change probability

\[
\hat{\lambda}_{exit} \sim p(m = 0 | m = 1) \\
\hat{\lambda}_{entry} \sim p(m = 1 | m = 0)
\]
5. **iMAC Occupancy Grid Maps** [Saarinen et al., 2012]
 - long-term data collection in industrial environment
 - milk production plant
 - Laser Guided Vehicle (LGV) in production use
5. **iMAC Occupancy Grid Maps** [Saarinen et al., 2012]

- long-term data collection in industrial environment
 - milk production plant
 - Laser Guided Vehicle (LGV) in production use
 - get orders from the production area and deliver them to the storage area
5. iMAC Occupancy Grid Maps [Saarinen et al., 2012]

- long-term data collection in industrial environment
 - milk production plant
 - Laser Guided Vehicle (LGV) in production use
 - data from 2D Sick LRF
 - pose data from positioning system
 - 10h of operation (8.8km trajectory)
 - dynamics in the environment
 - other LGVs (10)
 - manually operated forklifts
 - people
 - ever changing storage layout
5. **iMAC Occupancy Grid Maps** [Saarinen et al., 2012]
 - long-term data collection in industrial environment
 - results (black ↔ max.)
 - λ_{entry} (logarithmic scale)
5. **iMAC Occupancy Grid Maps** [Saarinen et al., 2012]

- long-term data collection in industrial environment
- results (black \Leftrightarrow max.)
 - λ_{entry}
 - λ_{exit}
 - busy corridors are more visible with time
5. iMAC Occupancy Grid Maps [Saarinen et al., 2012]
 - long-term data collection in industrial environment
 - results (black ⇔ max.)
 - $\lambda_{\text{entry}}, \lambda_{\text{exit}}$ pairs
iMAC Occupancy Grid Maps [Saarinen et al., 2012]

- long-term data collection in industrial environment
- results (black ⇔ max.)
 » analyse timescales ⇔ analyse behaviour of Markov chains after N steps
- **iMAC Occupancy Grid Maps** [Saarinen et al., 2012]
 - long-term data collection in industrial environment
 - analyse timescales ⇔ behaviour of Markov chains after N steps
 - activity shown for smaller N ⇔ shorter timescales
 - N=8 ⇔ motion and sensor noise
 - N=32 ⇔ starts to reveal semi-static parts

![Rich 3D Perception Work at AASS](image)
3D-NDT in Dynamic Environments
(A First Glimpse)
5. Rich 3D Perception Work at AASS

- 3D-NDT Model Maintenance (Saarinen et al.)
 - online updates
3D-NDT Model Maintenance (Saarinen et al.)

- online updates
- create model at different timescales (diff → dyn. objects)
3D Perception
for Transport and Inspection Robots

Prof. Dr. Achim Lilienthal
contact:
www.aass.oru.se/~lilien
achim.lilienthal@oru.se