Perception for the Next Generation of Mobile Robots for Industrial Applications

Prof. Achim J. Lilienthal
contact:
www.aass.oru.se/~lilien
achim.lilienthal@oru.se
Perception for the Next Generation of Mobile Robots for Industrial Applications

1. The AASS MRO Lab @Örebro University
2. Mobile Robotics & Olfaction Lab Profile
3. Accurate and Efficient Long-term World Modelling 3D NDT-OM for Mapping
5. Highly Reliable People Recognition Flash Camera People Tracking
6. Current Developments
7. Summary
8. Literature
The AASS MRO Lab
@Örebro University
Mobile Robotics & Olfaction Lab

Profile

AASS

The AASS Mobile Robotics & Olfaction Lab in 2015*
- 14 Ph.D. students, 10 senior researchers
- 7 ongoing projects, funding > 1.0M€/y

Research Area 1:
Mobile Transport Robots for Industrial Applications
- 3D perception, robot vision and navigation
- autonomous and safe long-term operation in the real world
- extensive technology transfer through collaborative projects with industrial partners
- autonomous forklifts, wheel loaders, mining vehicles, service robots on airports, in hospitals and for cleaning
- leader in Europe, key player world-wide

Research Area 2:
Mobile Robot Olfaction
- gas sensing with sensor systems in open sampling configuration (from electronic to mobile nose)
- gas sensor networks for air pollution monitoring, mobile robots for surveillance of landfill sites, gas leak localization, gas-sensitive flying robots
- world-leading in mobile robot olfaction

*18 Feb 2015
General Focus ...

- **perception systems** for mobile robots (fundamentals of autonomous operation and environmental monitoring)
General Focus ...
- perception systems for mobile robots (fundamental autonomous operation and environmental monitoring)

Objective ...
- theoretical and practical foundations of long-term operation of mobile robots in unconstrained, dynamic environments
1. **General Focus ...**
 - perception systems for mobile robots (fundamentals of autonomous operation and environmental monitoring)

2. **Objective ...**
 - theoretical and practical foundations of long-term operation of mobile robots in *unconstrained, dynamic environments*
1. General Focus ...
 - perception systems for mobile robots (fundamentals of autonomous operation and environmental monitoring)

2. Objective ...
 - theoretical and practical foundations of long-term operation of mobile robots in unconstrained, dynamic environments
1. **General Focus ...**
 - perception systems for mobile robots (fundamentals of autonomous operation and environmental monitoring)

2. **Objective ...**
 - theoretical and practical foundations of mobile robots in unconstrained, dynamic environments

3. **Approaches are Characterized by ...**
 - fusion of different sensor modalities
1. General Focus ...
 - perception systems for mobile robots (fundamentals of autonomous operation and environmental monitoring)

2. Objective ...
 - theoretical and practical foundations of long-term operation of mobile robots in unconstrained, dynamic environments

3. Approaches are Characterized by ...
 - fusion of different sensor modalities
 - timely integration into industrial demonstrators
1. Project History

- **2004**: 3D-P4Mining
- **2005**: NSAL
- **2006**: SLAM Benchmark (Toyota)
- **2007**: Project History
- **2008**: 3D-P4Mining
- **2009**: SLAM Benchmark (Toyota)
- **2010**: 3D-P4Mining
- **2011**: 3D-P4Mining
- **2012**: 3D-P4Mining
- **2013**: 3D-P4Mining
- **2014**: 3D-P4Mining
- **2015**: 3D-P4Mining
- **2016**: 3D-P4Mining
- **2017**: 3D-P4Mining
- **2018**: 3D-P4Mining
Mobile Robots for Logistics
2. **Logistics**
 - "moving goods from Point A to Point B" [URL]

2. **Intralogistics**
 - "the art of optimizing, automating, integrating, and managing the logistical flow of material goods with the flow of information pertaining to those goods [...] It can also encompass the logistical flow of materials within an entire supply chain ..." [URL]
Roboticics for Logistics

- Mining
 - (e.g., Atlas-Copco)

- Construction
 - (e.g., Volvo CE)

- Logistics
 - (e.g., Kollmorgen)

- Robots for flexible and efficient transport systems
2. Robotics for Logistics

- Robots for flexible and efficient transport systems
 ... also in hospitals, supermarkets, etc.
Robotics for Logistics – Open Problems

- Autonomous Industrial Vehicles: Where we are and what is missing.

 » Core requirements that point to shortcomings in SoA
 (distilled from experience in collaboration with several industrial partners)
2. Robotics for Logistics – Open Problems

- Deployment
 - **Dep1**: Avoid the need to hand-craft AGV paths for each new setting
 - **Dep2**: At least speed profiles should not be fully specified
 - **Dep3**: AGV system should avoid deadlocks automatically
 - **Dep4**: Perceptual functions should not rely on additional infrastructure
Robotics for Logistics – Open Problems

- Deployment
- Non-holonomic vehicles
 - V1: Automatic trajectory generation for non-holonomic vehicles (even without considering obstacles and coordination)
 - V2: Sophisticated mechanical structures (e.g. articulated vehicles, detachable trailers, ...)
 - V3: Payload can change manoeuvring capabilities and dynamics
Rob4Log

1. Robotics for Logistics – Open Problems
 - Deployment
 - Non-holonomic vehicles
 - Efficiency and safety
 - **ES1**: Reliable perception at high speeds (up to 30–40 km/h)
 - **ES2**: Generation of collision-free trajectories at high speeds
 - **ES3**: Autonomous vehicles in shared spaces should behave in a way comparable to human-operated vehicles
 - **ES4**: Actions of human drivers should be taken into account
2. Robotics for Logistics – Open Problems

- Deployment
- Non-holonomic vehicles
- Efficiency and safety
- Dynamic nature of the environment
 - **Dyn1**: Perceive dynamic objects, identify different types of dynamics, and learn how they are spatially distributed
 - **Dyn2**: Spatial information about dynamics should also be used for localization
 - **Dyn3**: Spatial information about dynamics should also be used for planning
Robotics for Logistics – Open Problems

- Deployment
- Non-holonomic vehicles
- Efficiency and safety
- Dynamic nature of the environment

Automated planning capabilities

- **AP1**: Automated planning at different levels of abstraction
- **AP2**: System should be able to refine existing plans in response to new requests (e.g., changed deadlines, new goals, or newly perceived obstacles)
- **AP3**: Task allocation/vehicle coordination should provide flexible solutions, e.g., sets of collision-free trajectories instead of precise temporal instants
- **AP4**: Reasoning tasks should be integrated with execution monitoring
Accurate and Efficient Long-term World Modelling

3D NDT-OM for Mapping
3. **3D NDT-OM ↔ 3D NDT**
 - 3D NDT (**Normal Distribution Transform**) [Magnusson et al., JFR 2007]
3D NDT-OM ↔ 3D NDT

- 3D NDT (Normal Distribution Transform) [Magnusson et al., JFR 2007]
 - Initially used only for registration
3D NDT(-OM) Mapping

- Research question
 - How to create and maintain compact, consistent world models from (rich) 3D data?
 - Many issues needed to be addressed
 - general research direction since about 3 years
 - One key issue was that recursive updates were not possible

- addressed in ICRA 2013 paper and IJRR 2013 article
3D NDT(-OM) Mapping, Recursive Update

- addressed in ICRA 2013 paper and IJRR 2013 article
 - formulation provides natural multi-resolution support
3D NDT-OM Mapping

- Research question
 - How to create/maintain compact, consistent world models from 3D data?
- Many issues needed to be addressed (general research direction since 3y)
- One key issue was that recursive updates were not possible
- Another issue is map maintenance in dynamic environments
3D NDT-OM Mapping

- Research question
 » How to create/maintain compact, consistent world models from 3D data?
- Many issues needed to be addressed (general research direction since 3y)
- One key issue was that recursive updates were not possible
- Another issue is map maintenance in dynamic environments
3D NDT-OM for Dynamic Environments

- Research question
 - How to maintain compact, consistent world models learned from 3D data?
- Combine NDT with robust, probabilistic SoA approach
3D NDT-OM for Dynamic Environments

- Research question
 - How to maintain compact, consistent world models learned from 3D data?
- Combine NDT with robust, probabilistic SoA approach
 - needs specific sensor model
3D NDT-OM for Mapping in Dynamic Environments

Resulting in a consistent final map of the environment. See full video at http://youtu.be/2IS0CbaThA0
Results, Large-Scale Industrial Environment

- ARLA milk storage facility

after 10 minutes ...

NDT

NDT-OM

NDT-OM (with free cells)
3. Results, Large-Scale Industrial Environment

- ARLA milk storage facility

after 130 minutes (NDT-OM) ...
Highly Accurate Navigation with Non-Holonomic Vehicles

3D NDT-OM for Navigation

![Graph showing ATE vs Resolution]
Monte Carlo Localization with NDT-OM

- standard Monte Carlo localization
- use NDT map for measurement update instead of grid map
 - exploit that NDT is a likelihood model
- compare grid-MCL and NDT-MCL (2D)
4. Monte Carlo Localization with NDT-OM

- standard Monte Carlo localization
- use NDT map for measurement update instead of grid map
 - exploit that NDT is a likelihood model
- compare grid-MCL and NDT-MCL (2D)
 - absolute error
 - static environment
 - trajectory: 120m
 - grid-MCL = amcl in ROS
Monte Carlo Localization with NDT-OM

- standard Monte Carlo localization
- use NDT map for measurement update instead of grid map
 - exploit that NDT is a likelihood model
- compare grid-MCL and NDT-MCL (2D)
 - absolute error
 - closed loop tests
 - grid map resolution: 0.03m
 - NDT map resolution: 0.5m
NDT-MCL

Normal Distributions Transform
Monte Carlo Localization

Jari Saarinen
Henrik Andreasson
Todor Stoyanov
Achim Lilienthal
Monte Carlo Localization with NDT-OM

- standard Monte Carlo localization
- use NDT map for measurement update instead of grid map
 - exploit that NDT is a likelihood model
- compare grid-MCL and NDT-MCL (2D)
 - absolute error
 - closed loop tests
 - grid map resolution: 0.03m
 - NDT map resolution: 0.5m
Monte Carlo Localization with NDT-OM

- standard Monte Carlo localization
- use NDT map for measurement update instead of grid map
 - exploit that NDT is a likelihood model
- compare grid-MCL and NDT-MCL (2D)
 - absolute error
 - closed loop tests
 - grid map resolution: 0.03m
 - NDT map resolution: 0.5m
That's not the whole story however ...
- calculate kinematically drivable paths with lattice-based motion planner for each vehicle
- post-process paths with continuous path smoother \(\rightarrow \) continuous drivable path
- generate trajectories by associating speed profiles consistent with dynamic and coordination constraints
Highly Reliable People Recognition

Flash Camera People Tracking
People Tracking with the Stereo-Flash Camera

- highly reliable detection and tracking of humans is required
- robust performance is key
 - under different weather/illumination conditions
 - independent of body pose
- industrial work sites allow to make specific assumptions
People Tracking with the Mono-Flash Camera

- Hardware

- NIR Imaging Sensor
- Wide-angle Lens: 120° FOV
- NIR Bandpass Filter: Center Wavelength: 940nm, Bandwidth: 10nm
- 16 x NIR LEDs: Center Wavelength: 940nm
People Tracking with the Mono-Flash Camera

- Hardware

![Diagram of the Mono-Flash Camera System]

- **NIR Imaging Sensor**
- **Wide-angle Lens**
 - 120° FOV
- **NIR Bandpass Filter**
 - Center Wavelength: 940nm
 - Bandwidth: 10nm
- **16 x NIR LEDs**
 - Center Wavelength: 940nm

![Graph showing Relative Sensitivity/Emission/Transmission vs. Wavelength]

- **Visible**
- **Near-infrared (NIR)**

Graph legend:
- Green: Relative Spectral Sensitivity (Imaging Sensor)
- Red: Relative Spectral Emission (IR-LEDs)
- Black: Relative Spectral Transmission (Bandpass Filter)
- Blue: Solar Radiation Spectrum at Sea Level
People Tracking with the Mono-Flash Camera

- Hardware
- Image Acquisition
People Tracking with the Mono-Flash Camera

- Hardware
- Image Acquisition
- Algorithm

3 main processing steps:

1.) Detection of Reflectors
 Image acquisition and feature based detection of reflective material

2.) Reflector Classification and Localization
 Supervised learning based classification into vest- and non-vest features, estimation of object distance and 3D projection

3.) Tracking
 Tracking of detected groups of reflectors over a series of input image pairs using a particle filter
People Tracking with the Mono-Flash Camera

- Hardware
- Image Acquisition
- Algorithm

3 main processing steps:

1.) Detection of Reflectors
 Image acquisition and feature based detection of reflective material

2.) Reflector Classification and Localization
 Supervised learning based classification into vest- and non-vest features, estimation of object distance and 3D projection

3.) Tracking
 Tracking of detected groups of reflectors over a series of input image pairs using a particle filter
People Tracking with the Mono-Flash Camera

- Hardware
- Image Acquisition
- Algorithm
 - Monocular distance estimation

Feature Descriptors

\[r = [r_1, r_2, r_3, ..., r_N] \]

Random Forest Regressor

3D Projection

Regressor Models

Random Forest Classifier

Vest Probabilities

Thresholding

Vest Features

Classifier Model

Scenario 1

- True Distance
- Estimated Distance

Scenario 2

- True Distance
- Estimated Distance

Scenario 3

- True Distance
- Estimated Distance

Scenario 4

- True Distance
- Estimated Distance
People Tracking with the Stereo-Flash Camera

- Camera Setup

1 Color Camera
For visualization purposes

2 NIR Camera Units

NIR Camera
Wide-angle Lens
Bandpass Filter
16 x NIR LEDs
People Tracking with the Stereo-Flash Camera

- Camera Setup
- Image Acquisition
People Tracking with the Stereo-Flash Camera

- Camera Setup
- Image Acquisition
People Tracking with the Stereo-Flash Camera

- Camera Setup
- Image Acquisition

The **ideal case**: no secondary NIR light sources

The **non-ideal case**: secondary NIR light sources cause background illumination
People Tracking with the Stereo-Flash Camera, Algorithm

Image Segmentation
- Detect image regions containing reflectors

Localization
- Obtain a 3D position estimate for each detected reflector

Classification
- Discriminate reflectors of safety clothing from arbitrary other reflectors

Tracking
- Assign individual reflectors to tracked persons and maintain a filtered state for position and speed
People Tracking with the Stereo-Flash Camera
People Tracking with the Stereo-Flash Camera

- Advantages of the flash camera approach
 - High robustness to various illumination conditions
 - Accurate detection under partial occlusion
 - Robust towards body pose variation

- Current Limitations
 - Tracking performance decreases under frequent interaction between persons
 - Algorithm allows to detect reflective safety vests but not specifically humans

- Future Work
 - Refine detections by using information from the color camera
Summary
MR&O Lab Profile

The AASS Mobile Robotics & Olfaction Lab in 2015*
- 14 Ph.D. students, 10 senior researchers
- 7 ongoing projects, funding > 1.0M€/y

Research Area 1: Mobile Transport Robots for Industrial Applications
- 3D perception, robot vision and navigation
- autonomous and safe long-term operation in the real world
- extensive technology transfer through collaborative projects with industrial partners
- autonomous forklifts, wheel loaders, mining vehicles, service robots on airports, in hospitals and for cleaning
- leader in Europe, key player world-wide

Research Area 2: Mobile Robot Olfaction
- gas sensing with sensor systems in open sampling configuration (from electronic to mobile nose)
- gas sensor networks for air pollution monitoring, mobile robots for surveillance of landfill sites, gas leak localization, gas-sensitive flying robots
- world-leading in mobile robot olfaction

*18 Feb 2015

Prof. Achim Lilienthal
contact:
www.aass.oru.se/~lilien
achim.lilienthal@oru.se
7. MR&O Lab Profile

- **Mobile Robots for Logistics**

![Mining](image1)

(e.g., Atlas-Copco)

![Construction](image2)

(e.g., Volvo CE)

![Logistics](image3)

(e.g., Kollmorgen)
MR&O Lab Profile

Mobile Robots for Logistics

Accurate and Efficient Long-term World Modelling
 - 3D NDT-OM for Mapping
MR&O Lab Profile

Mobile Robots for Logistics

Accurate and Efficient Long-term World Modelling

Highly Accurate Navigation with Non-Holonomic Vehicles
 - 3D NDT-OM for Navigation
 - Monte Carlo Localization with NDT (NDT-MCL)
MR&O Lab Profile

Mobile Robots for Logistics

Accurate and Efficient Long-term World Modelling

Highly Accurate Navigation with Non-Holonomic Vehicles

Highly Reliable People Recognition
- Flash Camera People Tracking
Current Developments
8. **Autonomous Picking & Palletizing 2014 – 2015 (3m)**

- Motivation:
 Mobile manipulation system for autonomous commissioning
Autonomous Picking & Palletizing 2014 – 2015 (3m)

- **Motivation:**
 Mobile manipulation system for autonomous commissioning

- **Contribution:**
 Prototype of a mobile manipulation system for autonomous commissioning
Autonomous Picking & Palletizing 2014 – 2015 (3m)

- First Demo: [MP4]
Autonomous Picking & Palletizing 2014 – 2015 (3m)

- **Research Platform APPLE:**
 - for autonomous commissioning in intralogistics settings
 - nonholonomic mobile base (7)
 - lightweight arm, LBR iiwa (3)
 - under-actuated gripper with active surfaces, Velvet Fingers (2)
 - NIR safety camera, RefleX (6)
8. **Autonomous Picking & Palletizing 2014 – 2015 (3m)**

- **Research Platform APPLE:**
 for autonomous commissioning in intralogistics settings

- **Pallet Detection:**
 - uses Asus Xtion Pro Live (5)
 - rough estimate of pallet position given (pre-defined pickup zone)
 - Signed Distance Function (SDF) tracker for "visual surveillance" with a given SDF model of the pallet
 - trajectory is recomputed on the fly (may include reverse driving)
8. Current Developments

- Developing Research Directions
 - HRI for Intralogistics Robots
8. Technology Transfer
 - Industrial prototype of flash camera
8. **Technology Transfer**
 - Industrial prototype of flash camera
 - First tests at customer site of SAUNA system
EU Topic Group ROB4LOG

- Topic Group of Logistics and Freight Transportation (ROB4LOG)
 - Robotics in Logistics and Transport
 - http://web.ita.es/eurobotics
Literature
Robot Vision in Changing Environments

9. **3D NDT, Registration**

9. **3D NDT, Non-Registration**

 Comparative Evaluation of the Consistency of Three-Dimensional Spatial Representations used in Autonomous Robot Navigation.

 Comparative Evaluation of Range Sensor Accuracy for Indoor Mobile Robotics and Automated Logistics Applications.

 Automatic Appearance-Based Loop Detection from 3D Laser Data Using the Normal Distributions Transform.

 Path Planning in 3D Environments using the Normal Distributions Transform.
9. **3D NDT OM**

9. **NDT Localization**

MALTA/SAVIE/SAUNA System

Autonomous Industrial Vehicles: Where we are and what is missing.

9. **Motion Planning and Execution**

 A Lattice-Based Approach to Multi-Robot Motion Planning for Non-Holonomic Vehicles.

 Drive the Drive: from Discrete Motion Plans to Smooth Drivable Trajectories.
Sensing-While Moving, Pile Handling

9.

RobLog, System

RobLog, SDF Tracker

 Improved Local Shape Feature Stability Through Dense Model Tracking.

- Daniel R. Canelhas, Todor Stoyanov, Achim J. Lilienthal.
 SDF Tracker: A Parallel Algorithm for On-line Pose Estimation and Scene Reconstruction From Depth Images.
9. RobLog, Decision Making

 Probabilistic Relational Scene Representation and Decision Making Under Incomplete Information for Robotic Manipulation Tasks.

- R. Mojtahedzadeh, A. Bouguerra and A. J. Lilienthal.
 Automatic Relational Scene Representation for Safe Robotic Manipulation Tasks.

 Robotics and Autonomous Systems (RAS), Special Issue on Emerging Spatial Competences: From Machine Perception to Sensorimotor Intelligence.
 To appear.
IR Flash Industry Safety Camera

Thanks for your attention!

Perception for the Next Generation of Mobile Robots for Industrial Applications

Prof. Achim J. Lilienthal
contact:
www.aass.oru.se/~lilien
achim.lilienthal@oru.se
5. **Summary**

- **Lab Profile**
- **Lab Projects**
- **Results 2013**
 - NDT-OM

![Point cloud](image1)

![NDT representation](image2)

\[\sim 300,000 \Rightarrow \sim 4,000 \]
5. Summary

- Lab Profile
- Lab Projects
- Recent Results
 - NDT-OM
5. **Summary**

- **Lab Profile**
- **Lab Projects**
- **Recent Results**
 - NDT-OM
 - included into the controller of Kollmorgen
5. **Summary**

- **Lab Profile**
- **Lab Projects**
- **Recent Results**
 - NDT-OM
 - NDT-D2D Registration

![Diagram with charts and graphs](image-url)
5. **Summary**

- **Lab Profile**
- **Lab Projects**
- **Recent Results**
 - NDT-OM
 - NDT-D2D Registration
 - NDT-MCL
5. Summary

- Lab Profile
- Lab Projects
- Recent Results
 - NDT-OM
 - NDT-D2D Registration
 - NDT-MCL
 - included into the controller of Kollmorgen
5. **Summary**

- **Lab Profile**
- **Lab Projects**
- **Recent Results**
 - NDT-OM
 - NDT-D2D Registration
 - NDT-MCL
 - SDF Tracker /
 - Improved Depth Features
5.

- Lab Profile
- Lab Projects
- Recent Results
 - NDT-OM
 - NDT-D2D Registration
 - NDT-MCL
 - SDF Tracker / Improved Depth Features
5. Summary

- Lab Profile
- Lab Projects
- Recent Results
 - NDT-OM
 - NDT-D2D Registration
 - NDT-MCL
 - SDF Tracker / Improved Depth Features
 - RobLog System (Qubica)
5. **Summary**

- **Lab Profile**
- **Lab Projects**
- **Recent Results**
 - NDT-OM
 - NDT-D2D Registration
 - NDT-MCL
 - SDF Tracker / Improved Depth Features
 - Flash Camera for Reflective Vest/People Tracking
 - → industrial prototype (Optronics)
5. Summary

- Lab Profile
- Lab Projects
- Recent Results
 - NDT-OM
 - NDT-D2D Registration
 - NDT-MCL
 - SDF Tracker / Improved Dep
 - Flash Camera for Reflective
 - Gasbot 1.0 / 2.0
5. **Summary**

- **Lab Profile**
- **Lab Projects**
- **Recent Results**
 - NDT-OM
 - NDT-D2D Registration
 - NDT-MCL
 - SDF Tracker / Improved Depth
 - Flash Camera for Reflective
 - Gasbot 1.0 / 2.0
 - market analysis
 - pre-study (Robotdalen)
5. Conclusions

- Lab Profile
- Lab Projects
- Recent Results

Conclusions – From the Lab to Industrial Prototypes
- tests under real-world conditions
- establish trustful relation (time)
 - understanding mutual goals / conditions
- postdocs (less pressure to publish)
- short-term adaptation of research strategy
- persistence regarding long-term research strategy